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Schrödinger Bridge Problem

Let X = (Xt)0≤t≤T be a diffusion process with Law(X0) = µ0.

Given µT 6= Law(XT ), how to “optimally” modify the dynamics of X so
that its distribution at time T coincides with µT ?
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Schrödinger Bridge Problem

Let µ0, µT be two probability distributions on Rd. Let X = (Xt)0≤t≤T
denote a weak solution to the stochastic differential equation (SDE)

X0 = ξ,

dXt = b(Xt, t)dt+ σdWt,

for t ∈ [0, T ] ,where b : Rd × [0, T ]→ Rd, σ ∈ (0,∞), and ξ ∼ µ0 is
independent of the Wiener process W .

Given a control u = (ut)0≤t≤T , define the controlled process Xu by

Xu
0 = ξ,

dXu
t = [b(Xu

t , t) + ut] dt+ σdWt.
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Schrödinger Bridge Problem

Let U denote the set of admissible controls, and

U0 = {u ∈ U : Law(Xu
T ) = µT }.

Schrödinger Bridge (SB) Problem

Find V = infu∈U0 J(u), where

J(u) = E

∫ T

0

‖ut‖2

2σ2
dt,

and find the optimal control u∗ such that J(u∗) = V .
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Schrödinger Bridge Problem

Let U denote the set of admissible controls, and

U0 = {u ∈ U : Law(Xu
T ) = µT }.

Schrödinger Bridge (SB) Problem

Find V = infu∈U0 J(u), where

J(u) = E

∫ T

0

‖ut‖2

2σ2
dt = DKL(P

u
X ,PX),

and find the optimal control u∗ such that J(u∗) = V .

DKL(ν, µ) =
∫
log(dνdµ)dν denotes the Kullback-Leibler divergence.
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Application to Denoising Diffusion Probabilistic Models

Many existing score-based generative modeling methods are essentially
numerical approximations to the solution of SB problem.

Denoising diffusion probabilistic models of [18, 21]

Two-stage Schrödinger bridge algorithm of [22]

Diffusion Schrödinger bridge algorithm of [6]

Time-series Schrödinger bridge algorithm of [16]

In these problems, µ0 is some reference distribution (e.g. normal), and µT
is the target distribution (e.g. distribution of the images in the CelebA
data set). Note µT is unknown but we have samples from µT .
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Solution to the SB Problem

Let p(x, t | y, s) denote the transition density of (uncontrolled process) X.
Let f0, fT denote the Lebesgue densities of µ0, µT respectively.

Theorem 3.2 of Dai Pra [5]

Suppose there exist integrable functions ρ0, ρT ≥ 0 such that

f0(y) = ρ0(y)

∫
p(x, T | y, 0)ρT (x) dx,

fT (x) = ρT (x)

∫
p(x, T | y, 0)ρ0(y) dy.

If
∫ f0
ρ0
dµ0 <∞ and DKL(µT ,Law(XT )) <∞, then the optimal control

for the SB problem is u∗t = u∗(Xu∗
t , t), where

u∗(x, t) = σ2∇x log E[ρT (XT ) |Xt = x].
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Solution to the SB Problem

That is, under the optimal control u∗, the joint distribution of (Xu∗
0 , Xu∗

T )
has density

ρ(y, x) = ρ0(y)p(x, T | y, 0)ρT (x).

By matching the marginal distributions, one gets the Schrödinger system
in the previous slide.

This is also a well studied problem in the statistical literature [8, 20].
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Example 1 for SB

Assume b = 0 for both examples, and let φσ be the density of N(0, σ2I).

Example 1

If µ0 is a Dirac measure at x0,

ρT (x) =
fT (x)

φσ
√
T (x− x0)

.

If fT is known up to a normalizing constant (e.g. a posterior distribution
in Bayesian statistics), one can use Monte Carlo sampling to approximate

u∗(x, t) = σ2∇x log
∫
ρT (y)φσ

√
T−t(y − x)dy.

See [17] for more sophisticated schemes.
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Example 1 for SB

An example on R2 with T = 1, µ0 = δ0 and µT being a mixture of four
normal distributions.
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Example 2 for SB

Example 2

Assume b = 0. If f0(x) =
∫
fT (y)φσ

√
T (x− y)dy, then ρT (x) = fT (x),

and

u∗(x, t) = σ2∇x log
∫
fT (y)φσ

√
T−t(x− y)dy.
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Example 2 for SB

Example 2

Assume b = 0. If f0(x) =
∫
fT (y)φσ

√
T (x− y)dy, then ρT (x) = fT (x),

u∗(x, t) = σ2∇x log
∫
fT (y)φσ

√
T−t(x− y)dy.

This integral is the density of Y + σ
√
T − tZ, where Y ∼ µT and

Z ∼ N(0, I). The function

s(x, σ) = ∇x log
∫
fT (y)φσ

√
T−t(x− y)dy

is called the score. If one has samples from µT , by adding Gaussian noise
to these samples, one can train a neural network for approximating the
score [19].



13/28

Example 2 for SB

Example 2 (continued)

To numerically simulate the solution to the SB problem, one still needs
samples from µ0 with density f0(x) =

∫
fT (y)φσ

√
T (x− y)dy. Some

possible solutions:

If T is sufficiently large, one can assume µ0 is approximately gaussian.
This yields the denoising diffusion model sampling algorithm of [21].

One can train another SB process such that the terminal distribution
coincides with µ0. This is the approach taken in Wang et al. [22].

Assuming the score s(x, σ
√
T ) is available, one can run a Langevin

diffusion targeting µ0 for sufficiently many iterations.
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Soft-constrained Schrödinger Bridge

Recall U denotes the set of admissible controls.

Soft-constrained Schrödinger Bridge (SSB) Problem

For β > 0, find V = infu∈U Jβ(u), where

Jβ(u) = βDKL(Law(Xu
T ), µT ) + E

∫ T

0

‖ut‖2

2σ2
dt,

and find the optimal control u∗ such that Jβ(u
∗) = V .
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Solution to the SSB Problem

Let p(x, t | y, s) denote the transition density of (uncontrolled process) X.
Let f0, fT denote the Lebesgue densities of µ0, µT respectively.

Theorem 4 of Garg et al. [14]

Suppose there exist integrable functions ρ0, ρT ≥ 0 such that

f0(y) = ρ0(y)

∫
p(x, T | y, 0)ρT (x) dx,

fT (x) = ρT (x)
(1+β)/β

∫
p(x, T | y, 0)ρ0(y) dy.

If
∫ f0
ρ0
dµ0 <∞, then the optimal control for the SSB problem is

u∗t = u∗(Xu∗
t , t), where

u∗(x, t) = σ2∇x log E[ρT (XT ) |Xt = x].
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Comparison between SB and SSB

For SB, Law(Xu∗
T ) = µT (with density fT ). For SSB, the density of

Xu∗
T is proportional to

fT (x)
β/(1+β)

(∫
p(x, T | y, 0)ρ0(y) dy

)1/(1+β)

.

So its law is a geometric mixture of µT and another distribution.

For SB, the solution does not exist if DKL(µT ,Law(XT )) =∞ (e.g.
when µT is the Cauchy distribution and X is a Wiener process). For
SSB, the solution always exists.

As β →∞, the solution of SSB converges to that of SB. (See Garg
et al. [14] for precise statements.)
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Example 1 for SSB

Example 1

If µ0 is a Dirac measure at x0,

ρT (x) =

(
fT (x)

p(x, T |x0, 0)

)β/(1+β)
.

If fT is known up to a normalizing constant, Monte Carlo sampling can be
used to simulate the resulting solution to the SSB problem.

Law(Xu∗
T ) has density proportional to

fT (x)
β/(1+β)p(x, T |x0, 0)1/(1+β).
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Example 2 for SSB

Example 2

Assume b = 0. If

f0(y) = c−1
∫
φσ
√
T (x− y)fT (x)

β
1+β dx,

where c =
∫
fT (x)

β/(1+β)dx is the normalizing constant assumed to be
finite. Then,

ρ0(y) = c−(1+β), ρT (x) = cβfT (x)
β/(1+β).

Hence,

u∗(x, t) = σ2∇x log
∫
fT (y)

β/(1+β)φσ
√
T−t(x− y)dy.
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Numerical Example for Normal Mixtures

Let the uncontrolled process X be such that Law(XT ) = µref , where

µref = 0.1N((1, 1), 0.052I) + 0.2N((−1, 1), 0.052I)+
0.3N((1,−1), 0.052I) + 0.4N((−1,−1), 0.052I).

Let our target terminal distribution be

µobj = 0.5N((1.2, 0.8), 0.52I) + 0.5N((−1.5,−0.5), 0.52I).

We solve the resulting SSB problem; that is, minimize

Jβ(u) = βDKL(Law(Xu
T ), µobj) + E

∫ T

0

‖ut‖2

2σ2
dt.
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Numerical Example for Normal Mixtures

SSB trajectories for normal mixture targets.
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Application to Generative Modeling

Suppose we have access to two data sets.

Dref : a large set of high-quality samples with distribution µref

Dobj: a small set of noisy samples with distribution µobj

Our objective is to generate realistic samples resembling those in Dobj. We
can use SSB as a regularization method to mitigate overfitting to Dobj.

For simplicity, we set X0 = 0 (i.e., µ0 = δ0), and we know that Law(Xu∗
T )

has density proportional to

fref(x)
1/(1+β)fobj(x)

β/(1+β).
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Score Matching

To simulate a diffusion process with terminal distribution being the
geometric mixture, we need to learn the score

s(x, σ̃) = ∇x log
∫
fref(x)

1/(1+β)fobj(x)
β/(1+β)φσ̃(x− y)dy.

Given only samples from µref and µobj, we can combine the existing score
matching algorithm with importance sampling to train a neural network
for approximating s(x, σ̃); see Garg et al. [14] for details.
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MNIST Example

Dobj: 50 noisy images labeled as “8”

Dref : all clean images not labeled as “8”

(added entywise noise ∼ N(0, 0.42))
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MNIST Example

FID scores (see our paper) indicate that β = 1.5 is the best
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On the Existence of Solution to SSB

How to find the pair (ρ0, ρT ) that satisfies the following system?

(1) f0(y) = ρ0(y)

∫
p(x, T | y, 0)ρT (x) dx, (1)

(2) fT (x) = ρT (x)
(1+β)/β

∫
p(x, T | y, 0)ρ0(y) dy. (2)

Initial guess ρ̂0 ⇒ calculate ρ̂T by (2) ⇒ update ρ̂0 by (1) ⇒ · · ·

If this iteration has a fixed point, then SSB has a solution.

When β =∞, this algorithm is known as iterative proportional fitting
procedure (IPFP) or Sinkhorn algorithm [8, 20].
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On the Existence of Solution to SSB

Under a compact support assumption, we show that this iteration is a
strict contraction mapping with respect to the Hilbert metric [1].

The proof is similar to existing results for the SB problem [13, 15, 2, 9, 7].
However, the exponent (1 + β)/β simplifies the argument significantly.



27/28

Time Series Extension

Time series SSB

Consider N fixed time points 0 < t1 < · · · < tN = T . Let µN be a
probability distribution on Rd×N such that µN � λ. For β > 0, find
V = infu∈U J

N
β (u), where

JNβ (u) = βDKL(Law((Xti)1≤i≤N ), µN ) + E

∫ T

0

‖ut‖2

2σ2
dt,

and find the optimal control u∗ such that JNβ (u∗) = V .

See our paper [14] for the solution.
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Concluding Remarks

Major contribution of our paper is theoretical: a rigorous solution to
the SSB problem using the log transformation technique [10, 11, 12].

Future direction: more general generative modeling algorithms based
on SSB.

Future direction: comparison between the convergence rate of IPFP
for SB and that for SSB.

There are interesting connections between SSB and the optimal
transport [4]. In particular, Chen et al. [3] studied a matrix OT
problem which is a discrete-time analogue to SSB on finite spaces.
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Thank you!
Slides available at https://zhouquan34.github.io

Jhanvi Garg, Xianyang Zhang and Quan Zhou. “Soft-constrained Schrödinger

bridge: a stochastic control approach.” International Conference on Artificial

Intelligence and Statistics (AISTATS 2024).

https://zhouquan34.github.io
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