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DAG models

DAG model

A p-node DAG model is a directed acyclic graph whose nodes are random
variables X1, . . . , Xp. It encodes the conditional independence (CI)
relations in the joint distribution of (X1, . . . , Xp).

We only consider linear Gaussian DAG models in this talk.
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Ordering of nodes

Ordering

Each DAG is consistent with at least one ordering: if i precedes j, then
the edge between Xi,Xj is directed as Xi → Xj .

For the DAG X2 → X1 ← X3, the ordering can be (2, 3, 1) or (3, 2, 1).

For linear Gaussian DAG models with ordering (1, 2, . . . , p), we can write

Xj = β1jX1 + · · ·β(j−1)jXj−1 + εj , for each j,

where ε1, . . . , εp are ind. normal random variables.
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Examples

A hypothetical DAG model for soil respiration

From my collaborator, Xuejun Dong, at Texas A&M University.

Ordering = (Temperature, Soil Water Content, Leaf Area, CO2 Efflux).
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Examples for p = 3

Stress Smoking Lung cancer Stress ⊥⊥ Lung cancer | Smoking

Stroke Smoking Lung cancer Stroke ⊥⊥ Lung cancer | Smoking

Smoking Lung cancer Pollution Smoking ⊥⊥ Pollution
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Examples for p = 3

So X2 → X1 ← X3 encodes one CI relation: X2 ⊥⊥ X3. This is called a
“v-structure”.

The other three DAGs all encode the CI relation X2 ⊥⊥ X3 | X1; we say
they are Markov equivalent.



9/42

Introduction MCMC for structure learning Rapid mixing of an MEC sampler MCMC without score equivalence

Markov equivalence class

Markov equivalence class (MEC)

Two DAGs are Markov equivalent and belong to the same MEC if they
encode the same set of CI relations.

Lemma

Two DAGs are Markov equivalent if and only if they have the same
skeleton and v-structures.

For example, X1 → X2 and X1 ← X2 are also Markov equivalent.

Given only observational data and no prior knowledge, Markov equivalent
linear Gaussian DAG models are not distinguishable.
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Score-based structure learning

Structure learning

Learn the underlying DAG of a p-variate probability distribution from n
i.i.d. observations.

Suppose we have a function ψ (called “score”) such that a larger value of
ψ(G) indicates that the DAG G is more likely. We can run a greedy local
search to find what DAG has the largest score.
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Examples of local moves

Typical local operators for modifying a DAG
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Consistency of the score and search algorithm

Local consistency of ψ

We say ψ is locally consistent if for any distinct DAGs G,G′ that satisfy

G′ = G ∪ {Xi → Xj},

we have
(i) ψ(G) > ψ(G′) if Xi ⊥⊥ Xj | Paj(G), and
(ii) ψ(G′) > ψ(G) if Xi 6⊥⊥ Xj | Paj(G),
where Paj(G) denotes the parent set of node Xj in G.

If p is fixed and n→∞, we expect ψ will become locally consistent. Then
will a local search algorithm always return the true DAG (regardless of the
initial state)?
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Three search spaces

Let Gp be the space of all p-node DAGs. In addition to Gp, one can also
perform local search on

Ep : the space of all p-node MECs;

Sp: symmetric group on {1, 2, . . . , p}, i.e., the space of all orderings.

Directly searching Ep bypasses the need of traversing MECs, but the
implementation of local moves on Ep can be complicated.

Sp is sometimes desirable since given the ordering, we can identify the
parent set for each node separately by variable selection.
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Bayesian structure learning

A standard Bayesian method is to use the prior of Geiger and Heckerman
[6], calculate a posterior on Gp and define the score ψ to be the
log-posterior. This approach satisfies the following.

Score equivalence: ψ(G1) = ψ(G2) if G1, G2 are Markov equivalent.

Modularity/decomposable score: We can write

ψ(G) =

p∑
j=1

ψj(Xj ,Paj(G))

for some functions ψ1, . . . , ψp (dependency on the data is omitted).
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Metropolis-Hastings algorithm

It is often straightforward to transform a greedy local search algorithm to
a local Metropolis-Hastings (MH) algorithm.

In each iteration, given the current DAG G,

1 propose a local move from G to some G′,

2 accept the proposal with probability

α(G,G′) = min

{
1,

eφ(G
′)q(G | G′)

eφ(G)q(G′ | G)

}
,

where q(G′ | G) denotes the probability of proposing G′ at G.

An example is the structure MCMC [13], which uses single-edge addition,
deletion and reversal as the proposal; more sophisticated versions have also
been developed [8, 9, 19].
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Challenges of MCMC sampling

|Gp| is enormous and grows super-exponentially in p [18], e.g.
|G10| ≈ 4× 1018.

Traversing large MECs can be very difficult.

The MEC of this DAG (which is
sparse) has 2p/2 member DAGs.
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Traversing MECs can be difficult

Suppose G∗ is the true DAG, and n is sufficiently large so that all CI
relations can be correctly inferred. Can the structure MCMC sampler
quickly move from G0 to G∗?
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Traversing MECs can be difficult

We only need to remove the edge 2→ 1 and reverse all the other edges.
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Traversing MECs can be difficult

Cannot remove 2→ 1 since 2 6⊥⊥ 1 | 3.
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Traversing MECs can be difficult

Cannot reverse 3→ 1 since that would result in a cycle.
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Traversing MECs can be difficult

Cannot reverse 3→ 2 since 2 ⊥⊥ 4 | 3.
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Traversing MECs can be difficult

Cannot reverse 4→ 3 since 3 ⊥⊥ 5 | 4.
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Traversing MECs can be difficult

Have to first reverse p→ p− 1, then p− 1→ p− 2, and so on. (All these
edge reversals result in Markov equivalent DAGs.)
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Traversing MECs can be difficult

Can we introduce a new type of proposal that allows us to jump from one
DAG to another random DAG in the same MEC?

Answer: Very difficult in practice, since counting or enumerating an MEC
is highly time-consuming. The counting algorithm of Ghassami et al. [7]
has complexity O(pd+2), where d is the graph degree.

Possible solution 1: We can directly construct a local MH algorithm on
Ep, the space of MECs.

Possible solution 2: Choose some score that distinguishes between
Markov equivalent DAGs.
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Questions to be addressed

In high-dimensional settings, do we have any theoretical guarantee for
the complexity of MCMC algorithms (or greedy local search
algorithms) for structure learning?

If traversing MECs causes slow mixing, can we sacrifice score
equivalence for faster mixing?

How important is the prior knowledge to the mixing of MCMC
algorithms?
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Constructing a rapidly mixing MEC sampler

Our goal is to construct an MH sampler on Ep with rapid mixing guarantee
under some high-dimensional assumptions (both n, p→∞ ).

Rapid mixing

An MCMC algorithm is rapidly mixing if its mixing time grows
polynomially with n and p.
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Existing MEC samplers

Existing samplers on Ep use CPDAG operators to propose local moves
[14, 16, 10, 2]. They can be slowly mixing when n→∞ and p is fixed.

CPDAG

Each MEC can be uniquely represented by a CPDAG (completed partially
directed acyclic graph), also called essential graph.

All the 3 graphs are CPDAGs. How to move from the 3rd to the 1st?
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How to define the neighborhood?

Challenges:

For MCMC samplers based on CPDAG operators, the “neighborhood”
of each MEC is too small, giving rise to local modes. (Neighborhood:
the set of MECs that can be reached by one proposal.)

But for rapid mixing to be possible, the neighborhood size needs to
be polynomial in p.
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Constructing the search space and neighborhood

We say a DAG G is sparse if its in-degree is bounded by din and
out-degree is bounded by dout.

Search space of our algorithm

The set of all MECs that contain at least one sparse member DAG.

Neighborhood of our algorithm

An MEC E ′ is a neighbor of MEC E if there exist sparse G′ ∈ E ′ and
sparse G ∈ E such that G′ can be obtained from G by adding, deleting or
“swapping” an edge.

”Swap” means to delete an edge j → i and add k → i.
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Constructing the search space and neighborhood

The choice of the neighborhood is very similar to that of GES (greedy
equivalence search), a classical structure learning algorithm with
consistency guarantee in low-dimensional settings; see Chickering [5].
(GES doesn’t use swap moves.)

This neighborhood is much larger than those used in existing MEC
samplers.

If din + dout = O(log p), the neighborhood size is polynomial in p; see
Lemma 1 of our paper [21].

Efficient implementation of the proposal can be done by using the
operators introduced in Chickering [5].
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Rapid mixing of RW-GES sampler

We define ψ (log-posterior) using an empirical Bayes model (extending a
DAG selection model of [12]) which assigns same score to Markov
equivalent DAGs.

Theorem 6 of Zhou and Chang [21]

Under some high-dimensional assumptions, our MCMC sampler RW-GES
(random walk GES sampler) is rapidly mixing with high probability.

This result is obtained by first proving the consistency of the greedy local
search. Challenge: The low-dimensional consistency result of GES cannot
be extended to the high-dimensional case due to node degree constraints.



27/42

Introduction MCMC for structure learning Rapid mixing of an MEC sampler MCMC without score equivalence

Example

Assume all CI relations can be inferred correctly. How to move from the
MEC of G0 to the MEC of the true DAG G∗?

Since X1 6⊥⊥ X2 and X1 6⊥⊥ X3, in GES we have to add an edge first.

If one imposes din = 1 or dout = 1, this path is not allowed.
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Consistency of greedy local search

Solution: introduce swap proposals, require the “true maximum degree”
d∗ = O(

√
log p) and use din = O(

√
log p), dout = O(log p).

We define d∗ as the maximum degree of minimal I-maps of the true DAG.

We showed that a greedy local search returns the true MEC within
(3d∗ + 2din)p steps (see Theorem 3 in our paper).
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Remarks

Please see my other slides [link] for MCMC theory and methodology
for general high-dimensional model selection problems.

Discussion on the ARGES algorithm of Nandy et al. [15].

Open problems: rapid mixing on the DAG or order space. (Caveat!)

One assumption (permutation β-min condition) required to obtain
the selection consistency or rapid mixing is restrictive [20]. In reality,
the posterior distribution is often highly multimodal.

The theory does yield useful insights (e.g. choice of hyperparameters,
orders of growth of n, p and model sparsity).

https://web.stat.tamu.edu/~quan/papers/MCMC2023.pdf
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A numerical example
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Left: trajectories of 20 RW-GES runs on a simulated data set with
n = 800, p = 100; red crosses mark the first time the true MEC is sampled.

Right: CPDAG of the true model used to simulate the data.
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Equal error variance assumption

With only observational data, the true DAG model may be identifiable
under additional assumptions, e.g. equal error variance [17].

Example: for p = 3 and ordering (1, 2, 3), equal error variance means that
we can express the joint distribution of (X1,X2,X3) by

X1 = ε1,

X2 = β12X1 + ε2,

X3 = β13X1 + β23X2 + ε3,

where ε1, ε2, ε3
i.i.d.∼ N(0, σ2) for some σ2 > 0.

This essentially means that the error variances are known up to a constant
multiplicative factor.
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Why the equal variance assumption helps

Example (Gaussian DAG with p = 2)

Consider X = (X1, X2) generated by the structure equation model

X1 = ε1, ε1 ∼ N(0, σ2),

X2 = βX1 + ε2, ε2 ∼ N(0, σ2),

where ε1, ε2 are independent; this corresponds to the DAG X1 → X2.

If β 6= 0,

(β2 + 1)σ2 = Var(X2) > Var(X1) = σ2.

If sample size is large, we should be able to tell whether X1 → X2 or
X1 ← X2 is the true model.
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Non-decomposable posterior score

We build an empirical Bayes model and derive the score of a DAG G under
the equal error variance assumption:

ψeev(G) = −|G|(c1 + c0 log p)−
αpn+ κ

2
log

 p∑
j=1

ω̂j(G)

 .

|G| denotes the number of edges in G.

c0, c1, α, κ are hyperparameters.

ω̂j(G) is the maximum likelihood estimate of the error variance of
node j given parent nodes in G.

ψeev is non-decomposable and this procedure is not score-equivalent.
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Why we want to use this in practice

We proved the high-dimensional selection consistency under a
condition on the true model that is slightly weaker than the equal
error variance assumption [3].

MCMC algorithms targeting a score-equivalent posterior usually
converge very slowly in practice due to the existence of large MECs.

The posterior distribution derived from equal error variance, eψeev , is
more concentrated and thus easier to sample from. A theoretical
argument is given in our paper [3].

Hence, even if we have no knowledge about the error variances, using ψeev

can be beneficial.
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Order MCMC

We build an order MCMC sampler targeting the posterior eψeev .

1 Similarly to minimal I-MAP MCMC [1], we approximate the posterior
probability of each ordering using a single best DAG.

2 We develop an iterative generalization of the top-down algorithm
of Chen et al. [4], which can be used to generate a warm start for the
order MCMC sampler.

3 We use adjacent transpositions to make proposals, which appears to
work well in our numerical experiments.
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Simulation results

n = 500, p = 40, error variances drawn from Unif(1− b, 1 + b).
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TD and LISTEN are two frequentists’ structure learning algorithms
assuming equal error variance. MINIMAP denotes minimal I-MAP MCMC
with a score-equivalent posterior (not assuming equal error variance).
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Simulation results

Results for p = 7, n = 100. We exactly calculate the posterior distribution
eψeev (which is non-score-equivalent and assumes equal error variance) and
eψ (which is score-equivalent and does not assume equal error variance).
We draw error variances from Unif(1− b, 1 + b) or Inv-gamma(3, 2).

Method b = 0 b = 0.3 b = 0.5 b = 0.7 b = 0.9 IG(3, 2)

Non-score- HD 0.1±0.0 0.5±0.2 1.6±0.4 2.1±0.5 2.6±0.5 3.3±0.8
equivalent Flip% 1.1±0.7 4.0±1.5 10.0±2.4 13.4±3.0 18.5±3.9 21.1±4.1
Score- HD 3.0±0.3 2.5±0.2 2.6±0.3 2.6±0.2 2.7±0.2 2.6±0.2

equivalent Flip% 23.0±2.9 22.3±3.1 23.4±3.2 23.7±3.2 24.7±3.1 23.7±3.0

Even when b = 0.9, imposing equal variance assumption is helpful. The
score-equivalent method makes more mistakes about edge directions.
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Another interpretation

As long as we have a minimal amount of information about the error
variances, we can probably obtain more accurate results by scaling the
data and imposing the equal error variance assumption.
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Single-cell data analysis

A single-cell RNA data set on Alzheimer’s diseases [11].

Control n0 = 2, 300, case n0 = 1, 666.

Genes from BDNF (brain-derived neurotrophic factor ) pathway:
p = 73.

Normalized log-transformed expression levels.

We analyze case and control samples separately. For each we run
order MCMC for 2× 105 iterations (first half as burn-in).
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Single-cell data analysis

0

100

200

0.00 0.25 0.50 0.75 1.00
PIP cutoff

T
he

 n
um

be
r 

of
 e

dg
es

Control
Case
Shared edges (undirected)
Shared edges (directed)

PIP: posterior inclusion probability of each edge. Most edges have the
same direction in both data sets.
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Comparison with the score-equivalent approach

At PIP cutoff = 0.5, for our method, 41% of edges in Gcase are also in
Gcont. For minimal I-MAP MCMC (score-equivalent), this ratio is 26%.

Stability analysis: repeat the same analysis 30 times and calculate the
Gelman-Rubin scale factor for each edge.

For our method, 99.7% edges have GR ≤ 1.1. For minimal I-MAP
MCMC, this ratio is 93.7%.

For minimal I-MAP MCMC, 90 edges have GR =∞.

For our method, maximum GR = 2.56 in control samples and 1.26 in
case samples.
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Concluding remarks

We obtain the first rapid mixing guarantee for high-dimensional
structure learning via MCMC sampling. A random walk MH sampler
on the MEC space that attains this bound is constructed.

To obtain the consistency of GES in high-dimensional settings, we
introduce swap moves and find sufficient sparsity conditions.

We show that imposing the equal error variance assumption is likely
to improve the mixing of MCMC algorithms and thus increase the
estimation accuracy. An order MCMC sampler is developed.

Mixing time of the MCMC sampler should probably be taken into
account when we choose the statistical model.

Instead of trying to improve the MCMC algorithm, sometimes it may
help to “modify” the target posterior.

Expert knowledge is important, even if it is inaccurate.
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Thank you!
Slides available at https://web.stat.tamu.edu/~quan/papers.html

Q. Zhou and H. Chang. “Complexity analysis of Bayesian learning of
high-dimensional DAG models and their equivalence classes.” Annals of
Statistics, arXiv:2101.04084.

H. Chang, J. Cai and Q. Zhou “Order-based structure learning without score
equivalence”, Biometrika, arXiv:2202.05150.

https://web.stat.tamu.edu/~quan/papers.html
arXiv: 2101.04084
arXiv: 2202.05150
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