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In this note, I explain how the famous multiple-try Metropolis (MTM)
algorithm [5] can be turned into a rejection-free MCMC method without
extra computational cost.

For details, see our paper [arxiv] (see Algorithm 7 therein) or my other
slides at https://web.stat.tamu.edu/~quan/.

https://arxiv.org/abs/2304.06251
https://web.stat.tamu.edu/~quan/
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MTM algorithm

I X : a general state space.

I Q(x, ·): a proposal distribution given current state x ∈ X .

I q(x, ·): density function of Q(x, ·); we assume q(x, y) = q(y, x).

I π: density function of the target distribution.

MTM is essentially a Metropolis-Hastings algorithm with a complicated
proposal scheme. Instead of simply proposing one state from Q(x, ·),
MTM proposes multiple candidate moves (i.e., multiple ”tries”) and then
assign larger proposal probabilities to states with larger π. We assume the
weight of y given current state x is proportional to

h

(
π(y)

π(x)

)
for some function h : (0,∞)→ (0,∞).
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MTM algorithm

An iteration of MTM at state x with m tries:

1. Draw y1, . . . , ym from Q(x, ·).

2. Select y from y1, . . . , ym with probability ∝ h
(
π(y)
π(x)

)
.

3. Draw x1, . . . , xm−1 from Q(y, ·). Set xm = x.

4. Accept y with probability

min

{
1,
Zh(x, y1, . . . , ym)

Zh(y, x1, . . . , xm)

}
,

where Zh(x, y1, . . . , ym) =
∑m

k=1 h
(
π(yk)
π(x)

)
.
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Choice of h

The recent studies [2, 1] suggest that one wants to choose h such that

h(u) = uh(u−1), ∀u > 0.

Such a function is called a balancing function. Examples include

h(u) = 1 + u, h(u) =
√
u, h(u) = min{1, u}.

We assume h is a balancing function henceforth.
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Our Multiple Try Importance Tempering algorithm

An iteration of MT-IT at state x with m tries, y1, . . . , ym.

1. Select y from y1, . . . , ym with probability ∝ h
(
π(y)
π(x)

)
.

2. Accept y. Assign to the previous state x (un-normalized) importance
weight Zh(x, y1, . . . , ym)−1.

3. Draw x1, . . . , xm−1 from Q(y, ·). Set xm = x. In the next iteration,
we use x1, . . . , xm as the m tries at state y.

The only differences from MTM are that (1) we always accept y, (2) we
calculate importance weight instead of acceptance probability (note both
rely on evaluating the function Zh).
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Why is it correct?

Let’s consider the dynamics of the state (x, {y1, . . . , ym}) ∈ X × Xm,
where Xm is the collection of all unordered subsets of X with m elements.
It is a Markov chain with transition density

p((x, {y1, . . . , ym}), (y, {x1, . . . , xm})) = A1A2,

where

A1 =
h
(
π(y)
π(x)

)
Zh(x, y1, . . . , ym)

, A2 =

m−1∏
k=1

q(y, xk).

A1 corresponds to how we select y from {y1, . . . , ym}, and A2 corresponds
to how we generate x1, . . . , xm. Note that xm is fixed to be x!
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Why is it correct?

p satisfies the detailed balance condition w.r.t. the stationary distribution

πh(x, {y1, . . . , ym}) ∝ π(x)Zh(x, y1, . . . , yk)

m∏
k=1

q(x, yk).

Comparing this to a reference distribution

π̄(x, {y1, . . . , ym}) = π(x)

m∏
k=1

q(x, yk),

we see that Zh(x, y1, . . . , yk)
−1 is the importance weight we need.
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Why is it correct?

Here is the proof of the detailed balance condition. Since (y1, . . . , ym) is
treated as an unordered set, we can assume y = yk. Then,

πh(x, {y1, . . . , ym})p((x, {y1, . . . , ym}), (y, {x1, . . . , xm}))

= π(x)q(x, y)h

(
π(y)

π(x)

)m−1∏
k=1

q(y, xk)

m−1∏
k=1

q(x, yk).

It only remains to show that

π(x)q(x, y)h

(
π(y)

π(x)

)
= π(y)q(y, x)h

(
π(x)

π(y)

)
,

which holds since q is assumed symmetric and h is a balancing function.



10/11

Why is it correct?

Caveat: Fixing xm = x is important! This guarantees that the transition
density from (x, {y1, . . . , ym}) to (y, {x1, . . . , xm}) is nonzero only if

y ∈ {y1, . . . , ym} and x ∈ {x1, . . . , xm}.

Without this symmetry, reversibility fails and the stationary distribution of
the chain is unclear.
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