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Questions to be Addressed

Suppose we want to approximate a distribution ⇧, and we can sample
from either ⇧ or another distribution Q. Which to choose?

By ChatGPT.
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Questions to be Addressed

For various Metropolis–Hastings schemes, can we skip the rejection step
and always accept the proposal?

By ChatGPT.
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Importance Sampling

⇧ : target probability distribution; Q : trial probability distribution.

Z
fd⇧ =

Z ✓
f
d⇧

dQ

◆
dQ.

Define w = d⇧/dQ.

Estimating the expectation of f with samples from ⇧
=) estimating the expectation of fw with samples from Q
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Importance Sampling Estimators

Let Xi ⇠ Q. Importance sampling estimator:

b⇧Q,n(f) :=
1

n

nX

i=1

f(Xi)w(Xi).

Self-normalized importance sampling estimator:

e⇧Q,n(f) :=

Pn
i=1 f(Xi)w(Xi)Pn

i=1w(Xi)
.

w only needs to be evaluated up to a normalizing constant.
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Variances of Importance Sampling Estimators

Let f be centered, i.e.,
R
fd⇧ = 0. Then,

�2(Q, f) := lim
n!1

nVar
⇣
e⇧Q,n(f)

⌘

= nVar
⇣
b⇧Q,n(f)

⌘

=

Z
f2w d⇧.

What is the optimal choice of Q?
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Variances of Importance Sampling Estimators

For a fixed, centered f , the optimal Q minimizing �2(Q, f) satisfies

dQ

d⇧
(x) / |f(x)|.

Unless f is constant, there exists some Q such that importance sampling
is more e�cient than direct sampling from ⇧.

What if f is not fixed? Then maybe it is optimal to sample from ⇧?
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Minimax Optimal Trial Distribution

Define the “maximum risk” of Q by

R(Q) = sup
f :

R
fd⇧=0,

R
f2d⇧=1

�2(Q, f).

So R(⇧) = 1.

We say Q⇤ is minimax optimal if

R(Q⇤) = inf
Q

R(Q).
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Minimax Optimal Trial Distribution

Theorem

⇧ is minimax optimal if and only if ⇧ does not have an atom with
probability mass > 0.5.

Theorem

If ⇧({x⇤}) = p > 0.5, then the minimax optimal Q⇤ is given by

Q⇤({x⇤}) = 1

2
, and

d⇧

dQ⇤ (x) = 2(1� p) for x 6= x⇤.

(So x⇤ receives largest importance weight equal to 2p.) Further,

R(Q⇤) = 4p(1� p).
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How to construct the worst test function?

f(x) = c A0(x)� c A1(x) where c is s.t.
R
f2d⇧ = 1.

Then �2(Q, f) =
R
f2w d⇧ � 1.8.
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Key Takeaways

Suppose ⇧ is concentrated on a small set A. As long as f does not vary
wildly over A, it is probably better to assign larger importance weights to
states in A and smaller weights to those outside.

Of course, in most applications, we don’t know where A is. Further, i.i.d.
sampling is often not feasible.

A practical solution: let Q have density q(x) / ⇡(x)� for some � 2 (0, 1)
and use MCMC to draw samples from Q.
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Markov Chain Importance Sampling

Let (Xi)i�1 be a Markov chain with stationary density q(x) / ⇡(x)� . We
can still use the self-normalized importance sampling estimator:

e⇧Q,n(f) :=

Pn
i=1 f(Xi)w(Xi)Pn

i=1w(Xi)
,

where w(x) / ⇡(x)1�� .

We call this scheme importance-tempered MCMC [3, 10].



14/26

Introduction Ind. Importance Sampling Importance-tempered MCMC More Sophisticated Schemes

Setup for Theoretical Analysis

e⇧Q,n(f) :=

Pn
i=1 f(Xi)w(Xi)Pn

i=1w(Xi)
,

If we view w(Xi) as the time the chain stays at Xi, then e⇧Q,n(f)
becomes a simple time average of a continuous-time process.

If we further replace each w(Xi) with an exponential random variable with
mean w(Xi), this continuous-time process becomes a continuous-time
Markov chain with generator

(A g)(x) =
1

w(x)

Z

X
[g(y)� g(x)] T (x, dy),

where T is the transition kernel of the discrete-time Markov chain (Xi)i�1.
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Uniform and Geometric Ergodicity

Definition

We say a Markov process (Yt)t�0 with state space X and invariant
distribution ⇧ is geometrically ergodic, if for each x 2 X , there exist
constants C(x) < 1 and ✓ 2 (0, 1) such that

dTV(Law(Yt | Y0 = x), ⇧)  C(x)✓t, 8 t > 0,

where dTV denotes the total variation distance.
If supx2X C(x) < 1, we say (Yt)t�0 is uniformly ergodic.
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Ergodicity of Metropolis–Hastings Algorithms

Let ⇧ be a positive continuous distribution on R. For any random walk
Metropolis–Hastings algorithm with a “local” proposal scheme, it is well
known that [6]

1 it cannot be uniformly ergodic;

2 it is geometrically ergdoic if and only if ⇧ has sub-exponential tails.
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Ergodicity of Importance-tempered Metropolis–Hastings

Consider our importance-tempered MCMC scheme with (Xi)i�1 generated
from a random walk Metropolis–Hastings algorithm targeting ⇡� . Let
(Yt)t�0 denote the corresponding continuous-time Markov chain.

Theorem

(Yt)t�0 is uniformly ergodic if ⇧ has sub-exponential tails.
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Ergodicity of Importance-tempered Metropolis–Hastings

Theorem

Let � > 1 and ⇧ have density

⇡(x) =
� � 1

2
(1 + |x|)�� , 8x 2 R,

Then (Yt)t�0 is uniformly ergodic if and only if

1

�
< � <

� � 2

�
.
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Numerical Illustration

Simulation of the continuous-time Markov chain (Yt)t�0 with ⇧ being t4.
The Kolmogorov–Smirnov test statistic compares t4 with the distribution
of Yt over 104 replicates. According to our theory, (Yt)t�0 is uniformly

ergodic if and only if 0.2 < � < 0.6.
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No Warm-up Iterations Needed

From mensjournal.com

mensjournal.com
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Numerical Illustration

Simulation of the importance-tempered Metropolis–Hastings algorithm
with initial value X0 ⇡ 0 (black) or X0 = 10 (red). Asymptotic variance is

estimated over 2, 000 replicates and scaled by �2(⇧, f).
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Making Metropolis–Hastings Rejection-free

Let K denote the transition kernel of the proposal scheme of a
Metropolis–Hastings Algorithms. If K has a stationary distribution Q, then
we can simply run K (i.e., accept every proposal) and correct for the bias
by importance weighting.

It probably won’t work (well) if K is a naive random walk proposal scheme.
But if K is an informed scheme, this idea is almost always e↵ective.
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Example: Importance Tempering of MTM

Locally balanced MTM on general state spaces

Let K(x, ·) denote a symmetric proposal with density . Let h be a
function s.t. h(u) = uh(u�1) for u � 0.

An iteration of MTM at state x with m tries:

1 Draw y1, . . . , ym from K(x, ·).
2 Select y from y1, . . . , ym with probability / h(⇡(y)/⇡(x)).

3 Draw x1, . . . , xm�1 from K(y, ·). Set xm = x.

4 Accept y with probability

min

⇢
1,

Zh(x, y1, . . . , ym)

Zh(y, x1, . . . , xm)

�
,

where Zh(x, y1, . . . , ym) =
Pm

k=1 h(⇡(yk)/⇡(x)).
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Example: Importance Tempering of MTM

Multiple-try importance tempering

In Step 4, we can actually just accept y and assign to the previous state x
importance weight 1/Zh(x, y1, . . . , ym). In the next iteration, the m
candidate neighboring states of y are NOT resampled.

No extra computational cost for obtaining the importance weight.

Why is it correct? One can show that this algorithm is just a Markov
chain importance sampling algorithm on an augmented space with
auxiliary variables being the m candidate neighboring states.
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Numerical Examples

A variable selection problem with n = 1, 000 and p = 5, 000

●

104
3 × 104

105
3 × 105

106
2.5 × 106

MH IIT MH−IIT−1 MH−IIT−2 RN−IIT MTM wTGS LIT−MH HBS

Box plot for the number of posterior calls (truncated at 2.5M) needed to find the best model.

We consider a setting described in [9], where the design matrix has high collinearity, and the

signal-to-noise ratio is intermediate. RN-IIT is a variant of the multiple-try importance

tempering on discrete spaces. MTM: [1]; wTGS: [10]; LIT-MH: [12]; HBS: [8].
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Concluding Remarks

Importance tempering seems always better than MH for utilizing
informed proposals. See [5] for more examples.

Mixing time and asymptotic variance analysis is more challenging. For
results on discrete spaces, see [11].

The balancing function h needs to be chosen with caution.

Importance tempering perspective opens doors to devising new
MCMC schemes that are more e�cient than existing ones.
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Thank you!
Slides available at https://zhouquan34.github.io

QZ. “From minimax optimal importance sampling to uniformly ergodic

importance-tempered MCMC.” arXiv:2506.19186.

G. Li, A. Smith and QZ. “Importance is important: Generalized Markov chain importance

sampling methods.” arXiv:2304.06251.

https://zhouquan34.github.io
arXiv:2506.19186
arXiv:%202304.06251
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ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian
computation. Biometrika, 101(3):655–671, 2014.

[5] Guanxun Li, Aaron Smith, and Quan Zhou. Importance is important: A
guide to informed importance tempering methods. arXiv preprint
arXiv:2304.06251, 2023.

[6] Kerrie L Mengersen and Richard L Tweedie. Rates of convergence of the
Hastings and Metropolis algorithms. The Annals of Statistics, 24(1):
101–121, 1996.

27/26



References II

[7] Je↵rey S Rosenthal, Aki Dote, Keivan Dabiri, Hirotaka Tamura, Sigeng
Chen, and Ali Sheikholeslami. Jump Markov chains and rejection-free
Metropolis algorithms. Computational Statistics, pages 1–23, 2021.

[8] Michalis K Titsias and Christopher Yau. The Hamming ball sampler. Journal
of the American Statistical Association, 112(520):1598–1611, 2017.

[9] Yun Yang, Martin J Wainwright, and Michael I Jordan. On the
computational complexity of high-dimensional Bayesian variable selection.
The Annals of Statistics, 44(6):2497–2532, 2016.

[10] Giacomo Zanella and Gareth Roberts. Scalable importance tempering and
Bayesian variable selection. Journal of the Royal Statistical Society Series B,
81(3):489–517, 2019.

[11] Quan Zhou and Aaron Smith. Rapid convergence of informed importance
tempering. pages 10939–10965, 2022.

[12] Quan Zhou, Jun Yang, Dootika Vats, Gareth O Roberts, and Je↵rey S
Rosenthal. Dimension-free mixing for high-dimensional bayesian variable
selection. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 84(5):1751–1784, 2022.

28/26


	Introduction
	Ind. Importance Sampling
	Importance-tempered MCMC
	More Sophisticated Schemes
	Appendix
	References


