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Questions to be Addressed

Suppose we want to approximate a distribution II, and we can sample
from either II or another distribution ). Which to choose?

By ChatGPT.
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Questions to be Addressed

For various Metropolis—Hastings schemes, can we skip the rejection step
and always accept the proposal?

From: editor@journal.org
To: Dr. Q. Zhou
Subjectit Decision on Manuscript #123345

Dear Dr. Zhou,

Thank you for submitting your manuscript
titled "Rejection-Free Sampling Methods for
Complex Distributions” to Journal of
Computational Statistics. After careful
consideration by the referees, I regret to
inform you that we cannot accept it for
publication.

Decision: REJEETED
v/ ACCEPTED

Rejection — Acceptance

By ChatGPT.
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Importance Sampling

IT : target probability distribution; @ : trial probability distribution.
dIl
dIl = — | dQ.
fran= [ (1) 2

Estimating the expectation of f with samples from II
—> estimating the expectation of fw with samples from @)

Define w = dII/dQ.
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Importance Sampling Estimators

Let X; ~ Q. Importance sampling estimator:
~ 1<
Hon(f) = - Z F(X)w(X5).
i=1

Self-normalized importance sampling estimator:

w only needs to be evaluated up to a normalizing constant.
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Variances of Importance Sampling Estimators

Let f be centered, i.e., [ fdII = 0. Then,
0@, f) = lim nVar (Tlg.(/))
= nVar (ﬁQn(f)>

= / fPwdIL

What is the optimal choice of Q7
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Variances of Importance Sampling Estimators

For a fixed, centered f, the optimal @ minimizing 02(Q, f) satisfies

aQ
T x|f(@).

Unless f is constant, there exists some @) such that importance sampling
is more efficient than direct sampling from II.

What if f is not fixed? Then maybe it is optimal to sample from 117
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Minimax Optimal Trial Distribution

Define the “maximum risk” of @) by

R(Q) = sup *(Q, f).
f: [ fdII=0, [ f2dI=1

So R(IT) = 1.

We say @Q* is minimax optimal if

R(Q7) = inf R(Q).
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Minimax Optimal Trial Distribution

IT is minimax optimal if and only if 11 does not have an atom with
probability mass > 0.5.

IfII({z*}) = p > 0.5, then the minimax optimal Q* is given by

1 dIl
@ ({2"}) =3, and 35

() =2(1 —p) for xz # x*.
(So z* receives largest importance weight equal to 2p.) Further,

R(Q") = 4p(1 — p).
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How to construct the worst test function?

w(x)
o _
N
w |
o |
v _|
o
s AN
o

f(z) = clay(z) — cla,(z) where cis s.t. [ f2dIl = 1.
Then 0(Q, f) = [ fPwdll > 1.8.
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Key Takeaways

Suppose 11 is concentrated on a small set A. As long as f does not vary
wildly over A, it is probably better to assign larger importance weights to
states in A and smaller weights to those outside.

Of course, in most applications, we don't know where A is. Further, i.i.d.
sampling is often not feasible.

A practical solution: let @ have density ¢(z) o< 7(x)? for some 8 € (0,1)
and use MCMC to draw samples from Q.
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Markov Chain Importance Sampling

Let (X;);>1 be a Markov chain with stationary density g(x) o< 7(x)?. We
can still use the self-normalized importance sampling estimator:

fig(f) = =il L,

where w(z) oc w(z) P,

We call this scheme importance-tempered MCMC [3, 10].
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Setup for Theoretical Analysis

fig(f) = =il R,

If we view w(X;) as the time the chain stays at X, then ﬁQn(f)
becomes a simple time average of a continuous-time process.

If we further replace each w(X;) with an exponential random variable with
mean w(Xj;), this continuous-time process becomes a continuous-time
Markov chain with generator

1

w(z)

(9)(z) = /X l9(y) — 9()] Tz, dy),

where T is the transition kernel of the discrete-time Markov chain (Xj;);>1.
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Uniform and Geometric Ergodicity

Definition

We say a Markov process (Y:):>o with state space X" and invariant
distribution II is geometrically ergodic, if for each x € X, there exist
constants C'(x) < oo and 6 € (0,1) such that

dTv(LaW(Y% | Yy = ZIZ‘), H) < C(m)@t, vVt >0,

where dpv denotes the total variation distance.
If sup,cy C(x) < 0o, we say (Y;);>0 is uniformly ergodic.




Importance-tempered MCMC
[e]e]e] lelelelele)

Ergodicity of Metropolis—Hastings Algorithms

Let II be a positive continuous distribution on R. For any random walk

Metropolis—Hastings algorithm with a “local” proposal scheme, it is well
known that [6]

@ it cannot be uniformly ergodic;

@ it is geometrically ergdoic if and only if IT has sub-exponential tails.
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Ergodicity of Importance-tempered Metropolis—Hastings

Consider our importance-tempered MCMC scheme with (X;);>1 generated
from a random walk Metropolis—Hastings algorithm targeting 7. Let
(Yz)e>0 denote the corresponding continuous-time Markov chain.

(Yz)e>0 is uniformly ergodic if I has sub-exponential tails.
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Ergodicity of Importance-tempered Metropolis—Hastings

Let v > 1 and II have density

—1
n(z) = 77(1 +|z))77, VzeR,

Then (Y:)¢>0 is uniformly ergodic if and only if
1 ¥—2

— << —.
Y v
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Numerical lllustration

B=0.55

0.2

0.1

KS statistic
KS statistic

0.05+

0.02+

Time Time

Simulation of the continuous-time Markov chain (Y;):>0 with II being ¢4.
The Kolmogorov—Smirnov test statistic compares t4 with the distribution
of Y; over 10% replicates. According to our theory, (Y2)e>0 is uniformly
ergodic if and only if 0.2 < 8 < 0.6.
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No Warm-up Iterations Needed
Don't Warm Up? You're Going
to Get Injured

A cold muscle is a muscle at risk.

Laura Williams - Dec 4, 2017 6:47 PM EST

Odilon Dimier/Getty Images

From mensjournal.com


mensjournal.com
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Numerical lllustration

Gaussian target distribution t target distribution
a 8-
8 Y 8
8 X o 8
® FAY/ & 4
> 4 g >
2 06600600000 8*2@8 ]
g Q\ égﬁﬁé §8 [ me2)| 2 2o
£ MMM‘? g% a2 £ o 1(x<2)
[ 60 9% + 9 -a- 1(x<4)
< Roo08¢ 1 % Xt < 1 b
05 %% —- log(x) - x
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0.0 0.2 0.4 06 0.8 1.0 1.2 12
B [

Simulation of the importance-tempered Metropolis—Hastings algorithm
with initial value X ~ 0 (black) or Xy = 10 (red). Asymptotic variance is
estimated over 2, 000 replicates and scaled by o(II, f).
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Making Metropolis—Hastings Rejection-free

Let I denote the transition kernel of the proposal scheme of a
Metropolis—Hastings Algorithms. If U has a stationary distribution @), then

we can simply run K (i.e., accept every proposal) and correct for the bias
by importance weighting.

It probably won't work (well) if X is a naive random walk proposal scheme.
But if IC is an informed scheme, this idea is almost always effective.

e

i

KEEP WALKING ,

JOHNNIE WALKER A
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Example: Importance Tempering of MTM

Locally balanced MTM on general state spaces

Let K(x,-) denote a symmetric proposal with density . Let h be a
function s.t. h(u) = uh(u=t) for u > 0.

An iteration of MTM at state « with m tries:
@ Draw yy,...,yn from K(z,-).
@ Select y from yi, ..., ym with probability oc h(7(y)/m(x)).
© Draw z1,...,2py—1 from K(y,-). Set z,, = z.
@ Accept y with probability

: { Zh(:r,yh---,ym)}
min q 1, ,
Zh(y,scl, PN ,(L‘m)

where Zp(z,y1, ..., Ym) = Y peq h(w(yk)/7(x)).
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Example: Importance Tempering of MTM

Multiple-try importance tempering

In Step 4, we can actually just accept y and assign to the previous state x
importance weight 1/Z,(x,y1,...,Ym). In the next iteration, the m
candidate neighboring states of y are NOT resampled.

No extra computational cost for obtaining the importance weight.

Why is it correct? One can show that this algorithm is just a Markov
chain importance sampling algorithm on an augmented space with
auxiliary variables being the m candidate neighboring states.
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Numerical Examples

A variable selection problem with n = 1,000 and p = 5,000

T

25x10°q
10°1

3x10°1 ‘?‘
10°1

3x10%1 ‘
10*- r r r r ' T : : :

MH T MH-IT-1 MH-IIT-2 RN-IIT MTM WwTGS  LIT-MH HBS

Box plot for the number of posterior calls (truncated at 2.5M) needed to find the best model.
We consider a setting described in [9], where the design matrix has high collinearity, and the
signal-to-noise ratio is intermediate. RN-IIT is a variant of the multiple-try importance

tempering on discrete spaces. MTM: [1]; wTGS: [10]; LIT-MH: [12]; HBS: [8].
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Concluding Remarks

@ Importance tempering seems always better than MH for utilizing
informed proposals. See [5] for more examples.

@ Mixing time and asymptotic variance analysis is more challenging. For
results on discrete spaces, see [11].

@ The balancing function h needs to be chosen with caution.

@ Importance tempering perspective opens doors to devising new
MCMC schemes that are more efficient than existing ones.



Thank you!

Slides available at https://zhouquan34.github.io
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