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Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) algorithms can be used to generate
samples from a target distribution π. The main idea is to simulate a
Markov chain with stationary distribution π.

Examples: Metropolis-Hastings (MH) algorithms, Gibbs samplers, etc.

Widely used in Bayesian statistics, since posterior distributions often
involve intractable normalizing constants.
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Example 1: variable selection

Consider the linear regression model

y = Zβ + ε,

where y, ε ∈ Rn, β ∈ Rp and Z is an n× p design matrix. We assume
most entries of β are zero, and our goal is to identify

γ = {1 ≤ k ≤ p : βk 6= 0}.

Search space

The search space is 2{1,...,p}, which has cardinality 2p.
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Example 1: variable selection

In high-dimensional settings, sparsity constraints need to be imposed, but
usually the search space still grows super-polynomially in p.

Local algorithms

Most sampling algorithms for variable selection are “local”: the next move
is selected from a “small” set of neighboring states which has cardinality
polynomial in p.

Example: a typical search path in variable selection.

{1, 2} add covariate 4−−−−−−−−−→ {1, 2, 4} swap covariate 2 with 3−−−−−−−−−−−−−−→ {1, 3, 4}

delete covariate 4−−−−−−−−−−→ {1, 3} delete covariate 1−−−−−−−−−−→ {3}
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Example 1: variable selection
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Example 2: structure learning

DAG model

A p-variate directed acyclic graph (DAG) encodes the conditional
independence (CI) relations among p node variables.

Structure learning

Learn the underlying DAG model of a p-variate probability distribution
from n i.i.d. observations, Z1,Z2, . . . ,Zn; each Zi ∈ Rp.

Search space

The collection of all p-vertex labeled DAGs; cardinality is
super-exponential in p.
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Example 2: structure learning

For two variables, there are 3 possible DAGs.
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Example 3: estimation of PDE parameters

Suppose that we have i.i.d. observations (z1, y1), (z2, y2), . . . , (zn, yn)
generated from

yi = f(zi;θ) + εi,

where f is the solution to a partial differential equation parameterized by
θ. Our goal is to estimate θ ∈ Rp.

Search space

The parameter space is Rp. Though it is continuous, gradient-based
sampling methods cannot be applied.
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Metropolis-Hastings (MH) algorithms

Let the state space be discrete. Assume that at every x, the proposal
distribution Q(x, ·) is a uniform distribution on N neighboring states. So

Q(x, y) = 1/N, if y ∼ x (i.e., y is a neighbor of x).

MH algorithm with proposal Q targeting π

An iteration at state x:

1 Draw y from Q(x, ·).
2 Accept y with probability

α(x, y) = min

{
1,
π(y)

π(x)

}
.

3 If y is accepted, we move to y; otherwise, stay at x.
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Each dot represents a state, and the height of the blue bar indicates π(·).
At point x0, the best move is x0 → x4.



11/34

Overview of my MCMC works Informed importance tempering More sophisticated IIT schemes

At point x0, a random walk proposal proposes x4 with probability 1/6.
We may use a locally informed proposal to increase this probability; e.g.

we propose xi with probability ∝ π(xi).
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Remarks on informed proposals

Similar ideas are used in many MCMC methods [Titsias and Yau,
2017, Zanella and Roberts, 2019, Zanella, 2020, Griffin et al., 2021]
and some non-MCMC methods [Hans et al., 2007, Shin et al., 2018].

To implement an informed proposal at x, we need to evaluate π(y)
for each y ∼ x; this can be parallelized.

Difficult to control the acceptance probability.

Informed MH algorithms can mix even more slowly than RWMH.
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Questions addressed in my works

1 Q: Do we have theoretical guarantees for informed MH algorithms?

A: Yes. See Zhou et al. [2022], Zhou and Chang [2023].

2 Q: How to choose the informed proposal scheme?

A: Quite complicated, but some guidance is provided in Zhou et al.
[2022], Zhou and Smith [2022].

3 Q: Do we have to use MH schemes?

A: No, we can use importance tempering [Zhou and Smith, 2022].

4 Q: How general is this importance tempering technique?

A: Almost every MH scheme can be converted to an importance
tempering scheme [Li et al., 2023].

Q3 and Q4 are the focus of today’s talk.
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Metropolis-Hastings (MH) algorithms

Assume that Q(x, y) = 1/N, if y ∼ x (i.e., y is a neighbor of x).

MH algorithm with proposal Q targeting π

An iteration at state x:

1 Draw y from Q(x, ·).
2 Accept y with probability

α(x, y) = min

{
1,
π(y)

π(x)

}
.

3 If y is accepted, we move to y; otherwise, stay at x.
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Metropolis-Hastings (MH) algorithms

Let P denote the transition matrix of the MH sampler:

P (x, y) = Q(x, y)α(x, y) = N−1α(x, y)1(y ∼ x), ∀x 6= y.

And P (x, x) = 1−
∑

y : y∼x P (x, y).

P is reversible w.r..t. π (detailed balance condition):

π(x)P (x, y) = π(y)P (y, x),

i.e., π(x)α(x, y) = π(y)α(y, x).

To simulate P , we only need to know an un-normalized version of π.
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Another perspective on MH algorithms

Accepted moves of an MH algorithm also form a Markov chain.

Example: Let the state space be {red, blue, green} and consider the
following path.

An equivalent representation of the above path is
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Another perspective on MH algorithms

Denote the transition matrix of accepted moves by P̃ . Observe that

P̃ (x, ·) is the conditional distribution of Y ∼ P (x, ·) given that Y 6= x.

For any x 6= y, we have

P̃ (x, y) =
P (x, y)

Z(x)
, where Z(x) =

∑
x′ : x′∼x

P (x, x′).

Stationary distribution of P̃

P̃ is reversible with respect to the distribution π̃ such that

π̃(x) ∝ π(x)Z(x).

That is, Z(x)−1 ∝ π(x)/π̃(x) is the un-normalized importance weight!
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Another perspective on MH algorithms

P R B G

R 1/4 1/2 1/4

B 1/2 1/4 1/4

G 1/2 1/2 0

⇒

P̃ R B G

R 0 2/3 1/3

B 2/3 0 1/3

G 1/2 1/2 0

π Z πZ

R 2/5 3/4 3/10

B 2/5 3/4 3/10

G 1/5 1 2/10

⇒

π̃ π/π̃

R 3/8 16/15

B 3/8 16/15

G 2/8 12/15
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Another perspective on MH algorithms

Interpretation of Z(x)−1

The number of iterations the MH algorithm stays at x is a geometric
random variable with mean Z(x)−1.

Hence, we can think of MH as an algorithm which

targets the posterior distribution π,

simulates the Markov chain P̃ , and

uses acceptance-rejection to unbiasedly estimate importance weights.

See, e.g., Douc and Robert [2011].
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A trivial but surprisingly useful observation

Recall that
Z(x) =

∑
y : y∼x

P (x, y) =
∑
y : y∼x

α(x, y)/N.

For discrete-space problems, we can often calculate Z(x) exactly. All we
need is to evaluate π(y)/π(x) for every y such that y ∼ x.

Why is it useful?

Imagine that the MH algorithm is at some x∗ such that π(x∗)� π(y) for
every y ∼ x. Exact calculation of Z(x∗) guarantees that we always leave
x∗ after N posterior evaluations.
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Revisit the detailed balance condition

Consider the detailed balance condition of the MH algorithm:

π(x)α(x, y) = π(y)α(y, x).

There are many choices of α such that the above condition holds. The
choice min{1, π(y)/π(x)} is most popular since Peskun’s ordering
guarantees that this is the optimal choice for MH schemes.

But if we calculate Z(x) =
∑

y∼x α(x, y)/N exactly,

the optimal choice of α is no longer clear, and

we can simulate P̃ even if α is unbounded .
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How to choose α

Balancing function (Zanella, JASA 2020)

We say h : (0,∞)→ (0,∞) is a balancing function if

h(u) = uh(1/u), for all u > 0.

Examples: h(u) = 1 + u, h(u) = min{1, u}, h(u) =
√
u.

Main idea: pick a balancing function h and replace α with

αh(x, y) = h

(
π(y)

π(x)

)
in the previous sampling schemes.
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Informed importance tempering (IIT)

Informed importance tempering

An iteration at state x:

1 Calculate αh(x, y) for every y ∼ x.

2 Calculate Zh(x) =
∑

y∼x αh(x, y)/N .

3 Assign to x importance weight 1/Zh(x).

4 Move to xnew with probability proportional to αh(x, xnew).

This generalizes the tempered Gibbs sampler of Zanella and Roberts
[2019], an MCMC scheme for variable selection that can be seen as IIT
with balancing function h(u) = 1 + u.

The term “importance tempering” comes from Gramacy et al. [2010],
Zanella and Roberts [2019].
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Rapid convergence of IIT

An obvious advantage of IIT is that the chain is always moving.

In Zhou and Smith [2022], we show that:

If π is “strongly unimodal,” IIT with h(u) = 1 + u converges
“extremely fast.”

However, h(u) = 1 + u is too aggresive and can be very inefficient for
multimodal targets.

h(u) =
√
u performs well in a wide range of settings.
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Extensions of IIT

This importance tempering trick turns out to be widely applicable. Most
existing Metropolis-Hastings schemes can be converted to IIT versions.

In Li et al. [2023], we propose the following IIT variants:

IIT schemes that do not require posterior evaluation of all neighbors;

integration of IIT and simulated tempering algorithm;

integration of IIT and pseudo-marginal methods;

importance-tempered multiple-try algorithm, which is applicable to
general state spaces.

IIT schemes appear to always converge faster than their MH counterparts
in our numerical studies.
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Example: combining MH and IIT

Consider the naive IIT with h(u) = min{1, u}. The difference between it
and MH is that, for each accepted state x,

IIT exactly calculates the importance weight 1/Zh(x),

MH estimates the importance weight using a geometric random
variable with mean 1/Zh(x).

We can combine the two approaches. In each iteration,

with probability ε, we exactly calculate Zh(x);

with probability 1− ε, we perform the acceptance-rejection as in MH.

Why is this useful?
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Example: importance tempering of MTM

Multiple-try Metropolis (MTM) algorithms are widely used but known to
suffer from low acceptance rates [Yang and Liu, 2023]. Chang et al. [2022],
Gagnon et al. [2022] proposed to use balancing functions to construct
locally balanced MTM schemes, which tend to have high acceptance rates.

But importance tempering can be used to further enforce the sampler to
always accept the proposal. There is no extra computational cost for
obtaining the importance weight; it is just the term used in the acceptance
ratio of MTM.
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Example: importance tempering of MTM

Locally balanced MTM on general state spaces

Let Q(x, ·) denote a symmetric proposal with density q such that
q(x, y) = q(y, x). Let h be a balancing function.

An iteration of MTM at state x with m tries:

1 Draw y1, . . . , ym from Q(x, ·).
2 Select y from y1, . . . , ym with probability ∝ h(π(y)/π(x)).
3 Draw x1, . . . , xm−1 from Q(y, ·). Set xm = x.

4 Accept y with probability

min

{
1,
Zh(x, y1, . . . , ym)

Zh(y, x1, . . . , xm)

}
,

where Zh(x, y1, . . . , ym) =
∑m

k=1 h(π(yk)/π(x)).
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Example: importance tempering of MTM

Multiple-try importance tempering

In Step 4, we can actually just accept y and assign to the previous state x
importance weight 1/Zh(x, y1, . . . , ym).

Caveat: in the next iteration, the m candidate neighboring states of y are
NOT resampled (we have already generated them in Step 3).

Why is it correct? One can show that this algorithm is just a standard
IIT algorithm on an augmented space with auxiliary variables being the m
candidate neighboring states.
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Numerical examples

A variable selection problem with n = 1, 000 and p = 5, 000

●
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3 × 104

105

3 × 105

106
2.5 × 106

MH IIT MH−IIT−1 MH−IIT−2 RN−IIT MTM wTGS LIT−MH HBS

Box plot for the number of posterior calls (truncated at 2.5M) needed to find the best model.

We consider a setting described in [Yang et al., 2016], where the design matrix has high

collinearity, and the signal-to-noise ratio is intermediate. RN-IIT is a variant of the multiple-try

importance tempering on discrete spaces. MTM: [Chang et al., 2022]; wTGS: [Zanella and

Roberts, 2019]; LIT-MH: [Zhou et al., 2022]; HBS: [Titsias and Yau, 2017].
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Numerical examples

Multiple-try schemes targeting N(0, Ip) with p = 50
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Box plot of the estimate of E||X||22 where X ∼ N(0, Ip). All algorithms are run for 5× 105

posterior calls, and the estimate is calculated using the second half of MCMC samples. MT-IT

denotes our method; MTM: [Gagnon et al., 2022]; sqrt: h(u) =
√
u; Barker: h(u) = u/(1+u).
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More IIT schemes

Simulated tempering

For simulated/parallel tempering, we can replace the MH chain at each
temperature with an IIT chain. One important advantage is:
we can use aggressive h at lower temperatures to encourage exploitation,
and conservative h at higher temperatures to encourage exploration.

Pseudo-marginal MCMC

As in pseudo-marginal MH algorithms, we can also use unbiased estimates
for π in an IIT scheme. The pseudo-marginal IIT never gets stuck at any
state, which is very different from pseudo-marginal MH.
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Numerical example

A geometric distribution example studied in Lee and  Latuszyński [2014]
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Trace plot for the posterior mean estimate with half of samples discarded as burn-in. π is a

geometric distribution, and π(x) is estimated by using the mean of K Bernoulli random

variables (K = 100) such that the success probability → 0 as x→∞. Dashed lines: ±1
standard deviation from 50 runs. Both samplers are initialized at x = 15.



34/34

Overview of my MCMC works Informed importance tempering More sophisticated IIT schemes

Concluding remarks

Informed MCMC methods can be much more efficient than random
walk MH for model selection problems. Local evaluation of π can be
parallelized. For more results on informed MCMC, see my slides [link].

For mixing time analysis, see Zhou et al. [2022], Zhou and Smith
[2022], Zhou and Chang [2023].

The balancing function h needs to be chosen with caution.

Importance tempering seems always better than MH for utilizing
informed proposals. See Li et al. [2023] for more examples.

Importance tempering perspective opens doors to devising new
MCMC schemes that are more efficient than existing ones.

https://web.stat.tamu.edu/~quan/papers/MCMC2023.pdf
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Thank you!
Slides available at https://web.stat.tamu.edu/~quan

QZ and A. Smith. “Rapid convergence of informed importance tempering.” AISTATS
(oral presentation), arXiv:2107.10827.

G. Li, A. Smith and QZ. “Importance is Important: A Guide to Informed Importance
Tempering Methods.” arXiv:2304.06251.

https://web.stat.tamu.edu/~quan
arXiv: 2107.10827
arXiv: 2304.06251
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Numerical examples
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Box plot for the number of posterior calls (truncated at 500K) needed to accurately approximate

π, which is a unimodal distribution on {0, 1}p with independent coordinates (p = 50). A larger

θ corresponds to faster tail decay. RN-IIT is a variant of the multiple-try importance tempering

on discrete spaces.
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Numerical examples
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π is a unimodal distribution on {0, 1}p with dependent coordinates (p = 10).
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Numerical examples
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π is a mixture of two unimodal distributions on {0, 1}p with independent coordinates (p = 50).
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