
Unit 8: Estimation of Normalizing Constants

8.1 Problem Set-up

Let π1, π2 be two distributions with support X1,X2 respectively, where X1 ⊂ X2. Assume
that both distributions have a density function with respect to the dominating measure µ,
which can be expressed by

dπ1
dµ

(x) =
p1(x)

C1

,
dπ2
dµ

(x) =
p2(x)

C2

,

where p1, p2 are known functions, and C1, C2 ∈ (0,∞) are unknown normalizing constants.
Our goal is to estimate the ratio

r =
C1

C2

=

∫
X1
p1(x)µ(dx)∫

X2
p2(x)µ(dx)

. (1)

This is a very common computational problem in statistics and data science. If one is only
interested in a single normalizing constant C1 (which actually is rare in practice), one can pick
a reference distribution π2 for which the normalizing constant is known and again consider
the problem of estimating r in (1).

Example 8.1. In simulated tempering, one is interested in estimating r for p1(x) = f(x)1/τ1

and p2(x) = f(x)1/τ2 (assume X1 = X2), where f is a known function and τ1, τ2 > 0 are tem-
peratures. An accurate estimation of this ratio of normalizing constants can help one choose
the auxiliary constants involved in the joint target distribution of simulated tempering [5].

Example 8.2. Consider a Bayesian hypothesis testing problem where we have two competing
nested models m1,m2 for explaining the data D. Let the parameter space of m1 be X1, which
is assumed to be a subset of X2, the parameter space of m2. Then, the standard Bayesian
approach is to compute the Bayes factor

BF =

∫
X1
f(D |m1, x1)p(x1 |m1)µ(dx1)∫

X2
f(D |m2, x2)p(x2 |m2)µ(dx2)

,

where f denotes the data likelihood, and p(x |m) denotes the prior distribution of the pa-
rameter x given model m. So the Bayes factor itself is a ratio of two normalizing constants.

Example 8.3. Consider a statistical model with likelihood function f(D |x), where D de-
notes the data and x denotes the parameter. Suppose that there is missing or censored data,
and denote the observed data by D0. To compute the likelihood of parameter x given only D0,
we need to evaluate f(D0 |x) =

∫
f(D,D0 |x)dD, which is the normalizing constant of the

complete-data likelihood (integrated over the complete data). To evaluate whether parame-
ter x1 or x2 fits the data D0 better, we need to evaluate the ratio of the two corresponding
normalizing constants.
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8.2 Direct Importance Sampling Methods

Example 8.4 (simple importance sampling). The importance sampling methods introduced
in Unit 1 can be used to estimate C1, C2 separately. Given i.i.d. samples X1, X2, . . . , Xn

drawn from another distribution with density π̃(x) and support X2, we can estimate Cj (for
j = 1, 2) by

Ĉj =
1

n

n∑
i=1

pj(Xi)

π̃(Xi)
.

Then,

r̂ =
Ĉ1

Ĉ2

=

∑n
i=1 p1(Xi)/π̃(Xi)∑n
i=1 p2(Xi)/π̃(Xi)

is a consistent estimator for r. Note that (i) the assumption X1 ⊂ X2 is crucial, and (ii) to
calculate r̂, we only need to evaluate π̃ up to a normalizing constant. This method is also
called ratio importance sampling [1]. Of course, X1, X2, . . . do not have to be independent
(e.g. they can be generated from an MCMC algorithm with stationary distribution π̃), and
we can also estimate C1, C2 using samples generated from different reference distributions.

Example 8.5 (reciprocal importance sampling). Let X1, X2, . . . , Xn be samples generated
from the distribution π2 (e.g. by an MCMC algorithm). By using an idea known as the
reciprocal importance sampling method [2], we can compute the estimator by

r̂ = n−1
n∑
i=1

p1(Xi)

p2(Xi)

is an unbiased estimator for r. This is actually a special case of Example 8.4 with π̃ = π2.

8.3 Bridge Sampling

Let Ei denote the expectation with respect to πi. Let α be a function defined on X1. Extend
p1, α to X2 by letting p1(x) = α(x) = 0 for x ∈ X2 \ X1. Observe that

r =
C1

C2

=
E2[p1(X)α(X)]

E1[p2(X)α(X)]
,

provided that the expectations are defined and nonzero, i.e.,

0 <

∣∣∣∣∫
X1

p1(x)p2(x)α(x)µ(dx)

∣∣∣∣ <∞.
Hence, if we have samples X1, . . . , Xn1 drawn from π1 and Y1, . . . , Yn2 drawn from π2, we can
estimate r by

r̂α =
n−12

∑n2

i=1 p1(Yi)α(Yi)

n−11

∑n1

i=1 p2(Xi)α(Xi)
. (2)

2
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This method is called bridge sampling [6]. By choosing α(x) = 1/p2(x) for x ∈ X1, we get
the estimator given in Example 8.5.

Let ρi = ni/n. It was shown in [6] that the asymptotically optimal choice of α is

α(x) ∝ 1

ρ1π1(x) + ρ2π2(x)
, ∀x ∈ X1,

where πi(x) = pi(x)/Ci denotes the normalized density function. This choice asymptotically
minimizes the relative mean-squared error RE(α) = r−2E[(r̂α − r)2]. Bridge sampling with
this optimal choice of α coincides with the reverse logistic regression method proposed by [4].

We can also derive the bridge sampling estimator by generalizing Example 8.5. We write

r =
B/C2

B/C1

, where B =

∫
X1

p1(x)p2(x)α(x)µ(dx).

By Example 8.5, the numerator of the right-hand side of (2) is an unbiased estimator of
B/C2, and the demoniator is an unbiased estimator of B/C1. Here, the distribution with
un-normalized density p1(x)p2(x)α(x) serves as a “bridge” connecting two potentially very
different distributions π1, π2. One can also use a sequence of bridges by writing

r =
C1

C2

=
L∏
k=1

B2k−1/B2k

B2k−1/B2k−2

with B0 = C1 and B2L = C2. Letting L → ∞, we obtain a “path” of distributions that
evolve from π1 to π2, which is the motivation behind the method to be introduced in the
next subsection.

8.4 Path Sampling

In this subsection, we assume X1 = X2 = X . Let p(x | θ) be a function of (x, θ) such that
p1(x) = p(x | θ1) and p2(x) = p(x | θ2) for some real numbers θ1 < θ2. Define

Z(θ) =

∫
X
p(x | θ)µ(dx).

So we have Ci = Z(θi) for i = 1, 2. Assume that

(i) p(x | θ) > 0 for every θ ∈ [θ1, θ2] and x ∈ X ;

(ii)
∫
X p(x | θ)µ(dx) <∞ for every θ ∈ [θ1, θ2];

(iii) for every θ ∈ [θ1, θ2],

d

dθ

∫
X
p(x | θ)µ(dx) =

∫
X

∂p(x | θ)
∂θ

µ(dx),

where all derivatives involved are also assumed to exist.

3
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Under the above assumptions, we have

d

dθ
logZ(θ) = EX∼p(x | θ)

[
∂ log p(X | θ)

∂θ

]
, (3)

where X ∼ p(x | θ) indicates that X is a random variable with un-normalized density p(x | θ).
Note that (3) is essentially the Fisher’s identity frequently used in mathematical statistics.

It follows from (3) that

λ := − log r = log
Z(θ2)

Z(θ1)
=

∫ θ2

θ1

EX∼p(x | θ) [U(X, θ)] dθ,

where

U(x, θ) =
∂ log p(X | θ)

∂θ
.

Let ν(θ) denote a “prior” probability distribution of θ with support [θ1, θ2]. We can further
express λ by

λ = E
[
U(X, θ)

ν(θ)

]
,

where (X, θ) is generated from the joint distribution with density proportional to p(x | θ)ν(θ).
Hence, if we have samples (Xi, θi)

n
i=1 drawn from p(x | θ)ν(θ), we can estimate λ by

λ̂ =
1

n

n∑
i=1

U(Xi, θi)

v(θi)
.

This method is called path sampling and is also applicable for multivariate θ [3].
Assume the samples (Xi, θi)

n
i=1 are i.i.d. The variance of the estimator λ̂ is given by

Var(λ̂) =
1

n

{∫ θ2

θ1

∫
X

U2(x, θ)

ν(θ)

p(x | θ)
Z(θ)

µ(dx) dθ − λ2
}
.

Equivalently, letting π(x | θ) = p(x | θ)/Z(θ) denote the normalized density, we have

nVar(λ̂) =

∫ θ2

θ1

∫
X

(
∂ log π(x | θ)

∂θ
+
∂ logZ(θ)

∂θ

)2
π(x | θ)
ν(θ)

µ(dx) dθ − λ2

=

∫ θ2

θ1

∫
X

(
∂ log π(x | θ)

∂θ

)2
π(x | θ)
ν(θ)

µ(dx) dθ +

∫ θ2

θ1

(
∂ logZ(θ)

∂θ

)2
1

ν(θ)
dθ − λ2.

The following result is from [1]:

Theorem 8.1. Under the assumptions given at the beginning of this subsection,

Var(λ̂) ≥ 4

n
H2(π1, π2),

where H2(π1, π2) =
∫
X

(√
π1(x)−

√
π2(x)

)2
µ(dx) is the Hellinger distance between the two

distributions.

Exercise 8.1. Prove (3).

Exercise 8.2. Use Cauchy-Schwarz inequality to prove Theorem 8.1.
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