Unit 8: Estimation of Normalizing Constants

8.1 Problem Set-up

Let π_1, π_2 be two distributions with support $\mathcal{X}_1, \mathcal{X}_2$ respectively, where $\mathcal{X}_1 \subset \mathcal{X}_2$. Assume that both distributions have a density function with respect to the dominating measure μ , which can be expressed by

$$\frac{\mathrm{d}\pi_1}{\mathrm{d}\mu}(x) = \frac{p_1(x)}{C_1}, \quad \frac{\mathrm{d}\pi_2}{\mathrm{d}\mu}(x) = \frac{p_2(x)}{C_2},$$

where p_1, p_2 are known functions, and $C_1, C_2 \in (0, \infty)$ are unknown normalizing constants. Our goal is to estimate the ratio

$$r = \frac{C_1}{C_2} = \frac{\int_{\mathcal{X}_1} p_1(x)\mu(\mathrm{d}x)}{\int_{\mathcal{X}_2} p_2(x)\mu(\mathrm{d}x)}.$$
(1)

This is a very common computational problem in statistics and data science. If one is only interested in a single normalizing constant C_1 (which actually is rare in practice), one can pick a reference distribution π_2 for which the normalizing constant is known and again consider the problem of estimating r in (1).

Example 8.1. In simulated tempering, one is interested in estimating r for $p_1(x) = f(x)^{1/\tau_1}$ and $p_2(x) = f(x)^{1/\tau_2}$ (assume $\mathcal{X}_1 = \mathcal{X}_2$), where f is a known function and $\tau_1, \tau_2 > 0$ are temperatures. An accurate estimation of this ratio of normalizing constants can help one choose the auxiliary constants involved in the joint target distribution of simulated tempering [5].

Example 8.2. Consider a Bayesian hypothesis testing problem where we have two competing nested models m_1, m_2 for explaining the data D. Let the parameter space of m_1 be \mathcal{X}_1 , which is assumed to be a subset of \mathcal{X}_2 , the parameter space of m_2 . Then, the standard Bayesian approach is to compute the Bayes factor

$$BF = \frac{\int_{\mathcal{X}_1} f(D \mid m_1, x_1) p(x_1 \mid m_1) \mu(dx_1)}{\int_{\mathcal{X}_2} f(D \mid m_2, x_2) p(x_2 \mid m_2) \mu(dx_2)},$$

where f denotes the data likelihood, and $p(x \mid m)$ denotes the prior distribution of the parameter x given model m. So the Bayes factor itself is a ratio of two normalizing constants.

Example 8.3. Consider a statistical model with likelihood function f(D | x), where D denotes the data and x denotes the parameter. Suppose that there is missing or censored data, and denote the observed data by D_0 . To compute the likelihood of parameter x given only D_0 , we need to evaluate $f(D_0 | x) = \int f(D, D_0 | x) dD$, which is the normalizing constant of the complete-data likelihood (integrated over the complete data). To evaluate whether parameter x_1 or x_2 fits the data D_0 better, we need to evaluate the ratio of the two corresponding normalizing constants.

8.2 Direct Importance Sampling Methods

Example 8.4 (simple importance sampling). The importance sampling methods introduced in Unit 1 can be used to estimate C_1, C_2 separately. Given i.i.d. samples X_1, X_2, \ldots, X_n drawn from another distribution with density $\tilde{\pi}(x)$ and support \mathcal{X}_2 , we can estimate C_j (for j = 1, 2) by

$$\hat{C}_j = \frac{1}{n} \sum_{i=1}^n \frac{p_j(X_i)}{\tilde{\pi}(X_i)}.$$

Then,

$$\hat{r} = \frac{\hat{C}_1}{\hat{C}_2} = \frac{\sum_{i=1}^n p_1(X_i) / \tilde{\pi}(X_i)}{\sum_{i=1}^n p_2(X_i) / \tilde{\pi}(X_i)}$$

is a consistent estimator for r. Note that (i) the assumption $\mathcal{X}_1 \subset \mathcal{X}_2$ is crucial, and (ii) to calculate \hat{r} , we only need to evaluate $\tilde{\pi}$ up to a normalizing constant. This method is also called ratio importance sampling [1]. Of course, X_1, X_2, \ldots do not have to be independent (e.g. they can be generated from an MCMC algorithm with stationary distribution $\tilde{\pi}$), and we can also estimate C_1, C_2 using samples generated from different reference distributions.

Example 8.5 (reciprocal importance sampling). Let X_1, X_2, \ldots, X_n be samples generated from the distribution π_2 (e.g. by an MCMC algorithm). By using an idea known as the reciprocal importance sampling method [2], we can compute the estimator by

$$\hat{r} = n^{-1} \sum_{i=1}^{n} \frac{p_1(X_i)}{p_2(X_i)}$$

is an unbiased estimator for r. This is actually a special case of Example 8.4 with $\tilde{\pi} = \pi_2$.

8.3 Bridge Sampling

Let \mathbb{E}_i denote the expectation with respect to π_i . Let α be a function defined on \mathcal{X}_1 . Extend p_1, α to \mathcal{X}_2 by letting $p_1(x) = \alpha(x) = 0$ for $x \in \mathcal{X}_2 \setminus \mathcal{X}_1$. Observe that

$$r = \frac{C_1}{C_2} = \frac{\mathbb{E}_2[p_1(X)\alpha(X)]}{\mathbb{E}_1[p_2(X)\alpha(X)]},$$

provided that the expectations are defined and nonzero, i.e.,

$$0 < \left| \int_{\mathcal{X}_1} p_1(x) p_2(x) \alpha(x) \mu(\mathrm{d}x) \right| < \infty.$$

Hence, if we have samples X_1, \ldots, X_{n_1} drawn from π_1 and Y_1, \ldots, Y_{n_2} drawn from π_2 , we can estimate r by

$$\hat{r}_{\alpha} = \frac{n_2^{-1} \sum_{i=1}^{n_2} p_1(Y_i) \alpha(Y_i)}{n_1^{-1} \sum_{i=1}^{n_1} p_2(X_i) \alpha(X_i)}.$$
(2)

Let $\rho_i = n_i/n$. It was shown in [6] that the asymptotically optimal choice of α is

$$\alpha(x) \propto \frac{1}{\rho_1 \pi_1(x) + \rho_2 \pi_2(x)}, \quad \forall x \in \mathcal{X}_1,$$

where $\pi_i(x) = p_i(x)/C_i$ denotes the normalized density function. This choice asymptotically minimizes the relative mean-squared error $\operatorname{RE}(\alpha) = r^{-2}\mathbb{E}[(\hat{r}_{\alpha} - r)^2]$. Bridge sampling with this optimal choice of α coincides with the reverse logistic regression method proposed by [4].

We can also derive the bridge sampling estimator by generalizing Example 8.5. We write

$$r = \frac{B/C_2}{B/C_1}$$
, where $B = \int_{\mathcal{X}_1} p_1(x)p_2(x)\alpha(x)\mu(\mathrm{d}x)$.

By Example 8.5, the numerator of the right-hand side of (2) is an unbiased estimator of B/C_2 , and the demoniator is an unbiased estimator of B/C_1 . Here, the distribution with un-normalized density $p_1(x)p_2(x)\alpha(x)$ serves as a "bridge" connecting two potentially very different distributions π_1, π_2 . One can also use a sequence of bridges by writing

$$r = \frac{C_1}{C_2} = \prod_{k=1}^{L} \frac{B_{2k-1}/B_{2k}}{B_{2k-1}/B_{2k-2}}$$

with $B_0 = C_1$ and $B_{2L} = C_2$. Letting $L \to \infty$, we obtain a "path" of distributions that evolve from π_1 to π_2 , which is the motivation behind the method to be introduced in the next subsection.

8.4 Path Sampling

In this subsection, we assume $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$. Let $p(x \mid \theta)$ be a function of (x, θ) such that $p_1(x) = p(x \mid \theta_1)$ and $p_2(x) = p(x \mid \theta_2)$ for some real numbers $\theta_1 < \theta_2$. Define

$$Z(\theta) = \int_{\mathcal{X}} p(x \mid \theta) \mu(\mathrm{d}x).$$

So we have $C_i = Z(\theta_i)$ for i = 1, 2. Assume that

- (i) $p(x \mid \theta) > 0$ for every $\theta \in [\theta_1, \theta_2]$ and $x \in \mathcal{X}$;
- (ii) $\int_{\mathcal{X}} p(x \mid \theta) \mu(\mathrm{d}x) < \infty$ for every $\theta \in [\theta_1, \theta_2];$
- (iii) for every $\theta \in [\theta_1, \theta_2]$,

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \int_{\mathcal{X}} p(x \,|\, \theta) \mu(\mathrm{d}x) = \int_{\mathcal{X}} \frac{\partial p(x \,|\, \theta)}{\partial \theta} \mu(\mathrm{d}x),$$

where all derivatives involved are also assumed to exist.

Under the above assumptions, we have

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log Z(\theta) = \mathbb{E}_{X \sim p(x \mid \theta)} \left[\frac{\partial \log p(X \mid \theta)}{\partial \theta} \right],\tag{3}$$

where $X \sim p(x \mid \theta)$ indicates that X is a random variable with *un-normalized* density $p(x \mid \theta)$. Note that (3) is essentially the Fisher's identity frequently used in mathematical statistics.

It follows from (3) that

$$\lambda \coloneqq -\log r = \log \frac{Z(\theta_2)}{Z(\theta_1)} = \int_{\theta_1}^{\theta_2} \mathbb{E}_{X \sim p(x \mid \theta)} \left[U(X, \theta) \right] \mathrm{d}\theta,$$

where

$$U(x,\theta) = \frac{\partial \log p(X \mid \theta)}{\partial \theta}$$

Let $\nu(\theta)$ denote a "prior" probability distribution of θ with support $[\theta_1, \theta_2]$. We can further express λ by

$$\lambda = \mathbb{E}\left[\frac{U(X,\theta)}{\nu(\theta)}\right],\,$$

where (X, θ) is generated from the joint distribution with density proportional to $p(x | \theta)\nu(\theta)$. Hence, if we have samples $(X_i, \theta_i)_{i=1}^n$ drawn from $p(x | \theta)\nu(\theta)$, we can estimate λ by

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \frac{U(X_i, \theta_i)}{v(\theta_i)}.$$

This method is called path sampling and is also applicable for multivariate θ [3].

Assume the samples $(X_i, \theta_i)_{i=1}^n$ are i.i.d. The variance of the estimator $\hat{\lambda}$ is given by

$$\operatorname{Var}(\hat{\lambda}) = \frac{1}{n} \left\{ \int_{\theta_1}^{\theta_2} \int_{\mathcal{X}} \frac{U^2(x,\theta)}{\nu(\theta)} \frac{p(x\,|\,\theta)}{Z(\theta)} \mu(\mathrm{d}x) \,\mathrm{d}\theta - \lambda^2 \right\}$$

Equivalently, letting $\pi(x \mid \theta) = p(x \mid \theta)/Z(\theta)$ denote the normalized density, we have

$$n\operatorname{Var}(\hat{\lambda}) = \int_{\theta_1}^{\theta_2} \int_{\mathcal{X}} \left(\frac{\partial \log \pi(x \mid \theta)}{\partial \theta} + \frac{\partial \log Z(\theta)}{\partial \theta} \right)^2 \frac{\pi(x \mid \theta)}{\nu(\theta)} \mu(\mathrm{d}x) \,\mathrm{d}\theta - \lambda^2$$
$$= \int_{\theta_1}^{\theta_2} \int_{\mathcal{X}} \left(\frac{\partial \log \pi(x \mid \theta)}{\partial \theta} \right)^2 \frac{\pi(x \mid \theta)}{\nu(\theta)} \mu(\mathrm{d}x) \,\mathrm{d}\theta + \int_{\theta_1}^{\theta_2} \left(\frac{\partial \log Z(\theta)}{\partial \theta} \right)^2 \frac{1}{\nu(\theta)} \mathrm{d}\theta - \lambda^2.$$

The following result is from [1]:

Theorem 8.1. Under the assumptions given at the beginning of this subsection,

$$\operatorname{Var}(\hat{\lambda}) \ge \frac{4}{n} H^2(\pi_1, \pi_2),$$

where $H^2(\pi_1, \pi_2) = \int_{\mathcal{X}} \left(\sqrt{\pi_1(x)} - \sqrt{\pi_2(x)} \right)^2 \mu(\mathrm{d}x)$ is the Hellinger distance between the two distributions.

Exercise 8.1. Prove (3).

Exercise 8.2. Use Cauchy-Schwarz inequality to prove Theorem 8.1.

References

- [1] Ming-Hui Chen and Qi-Man Shao. On Monte Carlo methods for estimating ratios of normalizing constants. *The Annals of Statistics*, 25(4):1563–1594, 1997.
- [2] Alan E Gelfand and Dipak K Dey. Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society: Series B (Methodological), 56(3):501–514, 1994.
- [3] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. *Statistical science*, pages 163–185, 1998.
- [4] Charles J Geyer. Estimating normalizing constants and reweighting mixtures in Markov Chain Monte Carlo. 1991.
- [5] Holden Lee, Andrej Risteski, and Rong Ge. Beyond log-concavity: Provable guarantees for sampling multi-modal distributions using simulated tempering langevin Monte Carlo. *Advances in neural information processing systems*, 31, 2018.
- [6] Xiao-Li Meng and Wing Hung Wong. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. *Statistica Sinica*, pages 831–860, 1996.