
Unit 7: Markov Chain Importance Sampling Methods

7.1 Core Principles

In Unit 1, we have introduced the standard importance sampling method, where i.i.d. sam-
ples are generated from a reference distribution. The central idea underlying the sampling
methods we discuss in this unit is to extend importance sampling to Markov chain samples.
The (self-normalized) importance sampling estimator still has the same form. The only differ-
ence is that the convergence rate of this estimator depends on the mixing rate of the Markov
chain. Below we state this result formally for discrete-space Markov chains; see, e.g., [13,
Lemma 2] for the proof and the corresponding central limit theorem. For continuous-space
Markov chains, this result would require more technical assumptions (which are typically
satisfied in MCMC applications).

Theorem 7.1 (Importance Sampling with Markov Chain Samples). Let π, π̃ > 0 be two
probability distributions defined on a finite state space X . Let (Xt)t≥0 be an irreducible Markov
chain on X with stationary distribution π̃. Define π(h) :=

∑
x∈X h(x)π(x), and define

π̂n(h) =
1

n

n∑
i=1

h(Xi)w(Xi), where w(x) =
π(x)

π̃(x)
.

Then, π̂n(h)
a.s.→ π(h).

Note that importance sampling can be used together with state space augmentation.
That is, if (Xt, Yt) has stationary distribution π̃(x, y), and π̄(x, y) is another distribution
that satisfies

∫
π̄(x, y)dy = π(x), then the importance weight is given by π̄(x, y)/π̃(x, y); see,

e.g., Example 7.1.

Exercise 7.1. Assume π, π̃ > 0 are defined on a finite space X . Let (Xt)t≥0 be an irreducible
and aperiodic Markov chain on X with stationary distribution π̃. Let h : X → R be such
that π(h) = 0, and define

π̂n(h) =

∑n
i=1 h(Xi)w(Xi)∑n

i=1w(Xi)

where w(x) = π(x)/π̃(x). Prove that
√
nπ̂n(h) converges in distribution to a normal random

variable. (Hint: use the remark below.)

Remark 7.1. For (Xt) considered in Exercise 7.1, it satisfies the following: for any h : X → R
with π̃(h) = 0, we have

1

n

n∑
i=1

h(Xi)
a.s.→ 0,

1√
n

n∑
i=1

h(Xi)
D→ N(0, σ2

h),

where σ2
h ≥ 0 is called the asymptotic variance.
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7.2 Two Examples

Example 7.1 (importance Sampling with Metropolis–Hastings). Consider a Metropolis–
Hastings algorithm with transition kernel P reversible with respect to π(x). Denote its
proposal kernel by Q with density q(x, y) (the density of proposing y given x). Let (Xt)t≥0
denote the samples generated from this Metropolis–Hastings algorithm, and let Yt be the
proposed state at the t-th iteration. Observe that (Xt, Yt)t≥0 is a bivariate Markov chain.
Since (Xt) has stationary distribution π and Yt is generated from Q(Xt, ·), (Xt, Yt)t≥0 has
stationary distribution

π̃(x, y) = π(x)q(x, y).

Define π̄(x, y) = π(x)π(y), which yields the importance weight

w(x, y) =
π̄(x, y)

π̃(x, y)
=

π(y)

q(x, y)
.

Now consider π(h) =
∫
h(y)π(dy), which we want to estimate. We can treat it as the expec-

tation of a bivariate function h̃(x, y) = h(y) with respect to π̄, since
∫
h̃(x, y)π̄(d(x, y)) =∫

h(y)π(dx)π(dy) = π(h). So by importance sampling, we can estiamte π(h) by

π̂(h) =
1

n

n∑
t=1

h(Yt)
π(Yt)

q(Xt, Yt)
.

Of course, in most cases π can only be computed up to a normalizing constant, in which case
we should use self-normalized importance sampling estimator:

π̂sn(h) =

∑n
t=1 h(Yt)

π(Yt)
q(Xt,Yt)∑n

t=1
π(Yt)

q(Xt,Yt)
.

This estimator was formally proposed in a recent paper [8], but it was already mentioned
in the early work of [1, Sec. 5]. Exactly the same reasoning was used to devise a more
complicated importance sampling estimator in [9].

Example 7.2 (dynamic weighting). We still let q denote the proposal density and define

r(x, y) =
π(y)q(y, x)

π(x)q(x, y)
.

In Metropolis–Hastings schemes, we accept a proposal y with probability 1 ∧ r(x, y). Now
let’s simulate a bivariate Markov chain (Xt,Wt)t≥0 where

◦ Xt+1 is generated from the proposal Q(Xt, ·);

◦ Wt+1 = Wt r(Xt, Xt+1).

2
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That is, we simply accept every proposal but keep track of a weighting variable Wt. Now
let’s assume that Q is reversible with respect to π̃(x), which means that

π̃(x)q(x, y) = π̃(y)q(y, x).

Fix X0 = x and fix W0 to be a positive constant. So we can write W0 = c π(x)/π̃(x) for some
c > 0. Now we have

W1 = W0 r(X0, X1) = c
π(X0)

π̃(X0)

π(X1)q(X1, X0)

π(X0)q(X0, X1)
= c

π(X1)

π̃(X1)
.

By induction, this shows that Wt = c π(Xt)/π̃(Xt) for every t, and thus Wt gives the exact
importance weight we need. This method is called dynamic weighting and still applies even
if Q is not reversible; see [10, 5] for more sophisticated versions.

7.3 Importance Correction for Informed Proposals

7.3.1 A Simple Algorithm on Discrete Spaces

Let X be finite and let Nx ⊂ X denote a set of neighboring states of x. Assume that y ∈ Nx
whenever x ∈ Ny. Assume π > 0. Consider the following algorithm.

Algorithm 7.1. Fix X0 ∈ X , and fix a function b : (0,∞) → (0,∞). In the t-th iteration
with Xt−1 = x:

(i) Calculate w(x, y) = b(π(y)/π(x)) for every y ∈ Nx;

(ii) Draw Xt from Nx with probability proportional to w(x, y).

Clearly, (Xt)t≥0 generated from the above algorithm is a Markov chain with transition
probability

pb(x, y) =
b
(
π(y)
π(x)

)
Zb(x)

1Nx(y), where Zb(x) =
∑
x′∈Nx

b

(
π(x′)

π(x)

)
. (1)

In most cases, we want to use a monotone nondecreasing function b so that this Markov
chain can quickly move to high-posterior regions. The transition matrix described by (1)
is also called an “informed proposal scheme” [11] since the transition probabilities depend
on the local landscape of π. Of course, (Xt)t≥0 probably does not have π as the stationary
distribution. But it turns out that as long as b satisfies a property, we can use importance
sampling to correct for the bias.

Definition 7.1. We say a function b : (0,∞)→ (0,∞) is a balancing function if

b(r) = r b(r−1), ∀r > 0.

Examples of balancing functions include

b(r) = 1 + r, b(r) =
r

1 + r
, b(r) =

√
r, b(r) = 1 ∧ r, b(r) = 1 ∨ r.

3
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Theorem 7.2. Suppose b is a balancing function. Then (Xt)t≥0 generated from Algorithm 7.1
has stationary distribution

πb(x) ∝ π(x)Zb(x).

Hence, the importance weight of x is given by 1/Zb(x).

Proof. Try it yourself.

So to estimate π(h), one can pick any balancing function b, run Algorithm 7.1 and then
compute the estimator

π̂n(h) =

∑n
i=1 h(Xi)/Zb(Xi)∑n

i=1 1/Zb(Xi)
. (2)

An application of this method to variable selection, named tempered Gibbs sampler,
was proposed in [12]; they used b(r) = 1 + r and used “importance tempering” to refer to
such an MCMC technique. The work of [7] considered modification of Metropolis–Hastings
schemes using Algorithm 7.1, which corresponds to b(r) = 1 ∧ r (see Section 7.3.3). The
convergence rate of the estimator given in (2) for general unimodal target distributions was
studied in [13], and it was found that b(r) =

√
r tends to be more robust than other choices

such as b(r) = 1 + r. More sophisticated versions of this algorithm have also been proposed;
see [6, 2, 4], and one example is given below.

7.3.2 Importance Correction for Multiple-try Proposals

We have discussed in Unit 3 the multiple-try Metropolis algorithm. Conceptually a multiple-
try proposal can be viewed as an informed proposal applied to a random neighborhood. It
turns out that the importance tempering technique can applied as well, which leads to a
rejection-free multiple-try algorithm [4] that is applicable to any state space.

Algorithm 7.2 (multiple-try importance tempering). Let X be arbitrary and the proposal
density q(x, y) be given; suppose q(x, y) > 0 whenever q(y, x) > 0. Fix a balancing function
b and a positive integer m (the number of tries). Given X0, generate a set S0 consisting of
m other states. In the t-th iteration with Xt−1 = x,St−1 = S:

(i) For every y ∈ S, calculate

α(x, y) = b

(
π(y)q(y, x)

π(x)q(x, y)

)
.

(ii) Calculate Z(x,S) =
∑

y∈S α(x, y).

(iii) Set the importance weight of Xt−1 = x to 1/Z(x,S).

(iv) Draw Xt = x′ from S with probability proportional to α(x, x′).

(v) Draw y′1, . . . , y
′
m−1 i.i.d. from the proposal distribution Q(Xt, ·).

(vi) Set St = {y′1, . . . , y′m−1, x}.
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To prove that this algorithm is correct, we view it as a bivariate Markov chain (Xt,St)
and find that it is reversible with respect to

π̃(x,S) ∝ π(x)Z(x,S)
∏
y∈S

q(x, y). (3)

Then we define π̄(x,S) ∝ π(x)
∏

y∈S q(x, y), which shows that 1/Z(x,S) is the importance
weight we need. Note that the set S is used as an auxiliary variable.

Exercise 7.2. Show that Algorithm 7.2 is reversible with respect to (3).

7.3.3 A Remark on Metropolis–Hastings Schemes

Consider a Metropolis–Hastings algorithm with proposal q(x, y) defined on a general state
space. Let (Xt)t≥0 be the samples generated from this sampler and let (Yt)t≥0 denote the
accepted moves. That is, writing Y0 = X0 and τ(0) = 0, we define for each t ≥ 1,

Yt = Xτ(t), where τ(t) = min{i > τ(t− 1) : Xi 6= Yt−1}.

If we want to estimate π(h), we can use the estimator

π̂n(h) =
1

n

n∑
i=1

h(Xi) =

∑T
i=1 h(Yi)Wi∑T

i=1Wi

(4)

where T = max{i : τ(i) ≤ n} and Wi is the number of iterations the chain has stayed on Yi.
Note that we can express Wi by Wi = (τ(i+ 1)∧ (n+ 1))− τ(i). The second characterization
of π̂n(h) is the form of an importance sampling estimator, and we now justify that Wi indeed
gives the correct importance weight (which is expected since otherwise Metropolis–Hastings
schemes are biased).

Observe that (Yt) is also a Markov chain with transition density p̃ such that for y 6= x,

p̃(x, y) =
q(x, y)α(x, y)

Z(x)
, Z(x) =

∫
z 6=x

q(x, z)α(x, z)dz,

where of course α(x, y) denotes the acceptance probability. We know that Metropolis–
Hastings schemes are invariant with respect to π due to the detailed balance condition:

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x).

But this also immediately implies that p̃ is invariant with respect to π̃(x) ∝ π(x)Z(x).
Hence, if we only collect the accepted moves, (Yt), of the Metropolis–Hastings chain, then
the exact importance weight of Yt = y is equal to Z(y)−1. The last observation to make is
that, given Yi = y, Wi is a geometric random variable with success probability Z(y), and
thus the expectation of Wi equals Z(y)−1. Hence, we can think of the Metropolis–Hastings
algorithm as a Markov chain with transition density p̃ and stationary distribution π̃, and it
uses geometric random variables to estimate the importance weight of each sample.
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This importance sampling perspective is more general, since we can then improve the
estimator (4) by reducing the variance of the importance weight estimate (i.e., Wi). For
example, the algorithm we discussed in Section 7.3.1 simply calculates this importance weight
exactly (which is possible on finite spaces). More sophisticated schemes on continuous spaces
have also been developed; see, e.g., [1, 3].
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