Unit 7: Markov Chain Importance Sampling Methods

7.1 Core Principles

In Unit 1, we have introduced the standard importance sampling method, where i.i.d. sam-
ples are generated from a reference distribution. The central idea underlying the sampling
methods we discuss in this unit is to extend importance sampling to Markov chain samples.
The (self-normalized) importance sampling estimator still has the same form. The only differ-
ence is that the convergence rate of this estimator depends on the mixing rate of the Markov
chain. Below we state this result formally for discrete-space Markov chains; see, e.g., [13]
Lemma 2| for the proof and the corresponding central limit theorem. For continuous-space
Markov chains, this result would require more technical assumptions (which are typically
satisfied in MCMC applications).

Theorem 7.1 (Importance Sampling with Markov Chain Samples). Let m,7 > 0 be two
probability distributions defined on a finite state space X. Let (X¢)i>0 be an irreducible Markov

chain on X with stationary distribution 7. Define w(h) =Y ., h(z)7(x), and define

7n(h) = %Zh(Xi)w(Xi), where w(x) = —.

Then, ,(h) 3 w(h).

Note that importance sampling can be used together with state space augmentation.
That is, if (Xy,Y;) has stationary distribution 7(z,y), and 7(z,y) is another distribution
that satisfies [ 7(z,y)dy = m(z), then the importance weight is given by 7 (z,y) /7 (z,y); see,
e.g., Example

Exercise 7.1. Assume 7,7 > 0 are defined on a finite space X'. Let (X});>0 be an irreducible
and aperiodic Markov chain on X with stationary distribution 7. Let h: X — R be such

that w(h) = 0, and define
2 i M(Xi)w(X5)
> i w(Xo)
where w(z) = w(z)/7(x). Prove that v/n,(h) converges in distribution to a normal random
variable. (Hint: use the remark below.)

7Arn(h) =

Remark 7.1. For (X;) considered in Exercise[7.1] it satisfies the following: for any h: X — R
with 7(h) = 0, we have

1 _ a.s. 1 & D 2
“STRX) S0, — Y (X)) 2 N(0,02),
2 2RO B0, DR B (0.0

where o7 > 0 is called the asymptotic variance.
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7.2 Two Examples

Example 7.1 (importance Sampling with Metropolis—Hastings). Consider a Metropolis—
Hastings algorithm with transition kernel P reversible with respect to m(x). Denote its
proposal kernel by @ with density ¢(z,y) (the density of proposing y given z). Let (Xi)i>0
denote the samples generated from this Metropolis—Hastings algorithm, and let Y; be the
proposed state at the ¢-th iteration. Observe that (X, Y;);>0 is a bivariate Markov chain.
Since (X;) has stationary distribution 7 and Y; is generated from Q(Xy,-), (X¢, Yi)i>0 has
stationary distribution

T(z,y) = m(x)q(z,y).

Define 7(x,y) = m(x)7(y), which yields the importance weight

m(z,y) _ 7w(y)
w(z,y) = - =
m(z,y)  q(z,y)
Now consider 7(h) = [ h(y ), which we want to estimate. We can treat it as the expec-
tation of a bivarlate functlon h(m,y) = h(y) with respect to 7, since [ h(z,y)7(d(z,y)) =
[ h(y m(dy) = w(h). So by importance sampling, we can estiamte 7(h) by

ZW Xt,Yt)

Of course, in most cases 7 can only be computed up to a normalizing constant, in which case
we should use self-normalized importance sampling estimator:

Yt)
S ) s
7r(Y
Zt 1gq Xt th
This estimator was formally proposed in a recent paper [§], but it was already mentioned

in the early work of [I, Sec. 5]. Exactly the same reasoning was used to devise a more
complicated importance sampling estimator in [9].

'ﬁ-sn(h) -

Example 7.2 (dynamic weighting). We still let ¢ denote the proposal density and define

m(y)q(y, =)

") = ()

In Metropolis—Hastings schemes, we accept a proposal y with probability 1 A r(z,y). Now
let’s simulate a bivariate Markov chain (X, W;);>¢ where

o Xy is generated from the proposal Q(Xy,-);
o Wi = Wir(Xy, Xepa).
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That is, we simply accept every proposal but keep track of a weighting variable W;. Now
let’s assume that () is reversible with respect to 7(x), which means that

T(z)q(7,y) = 7(y)a(y, z).

Fix Xy = z and fix W, to be a positive constant. So we can write Wy = ¢ (x)/7(z) for some
¢ > 0. Now we have

m(Xo) m(X1)q(Xy, Xo)  7(Xy)
Wy = Wyr(Xo, X1) = c= = c— .
P Mot M) = G (Koo X0) RO
By induction, this shows that W; = c¢n(X;)/7(X;) for every t, and thus W; gives the exact
importance weight we need. This method is called dynamic weighting and still applies even
if @ is not reversible; see [10} 5] for more sophisticated versions.

7.3 Importance Correction for Informed Proposals
7.3.1 A Simple Algorithm on Discrete Spaces

Let X be finite and let NV, C X denote a set of neighboring states of x. Assume that y € N,
whenever x € N,. Assume 7 > 0. Consider the following algorithm.

Algorithm 7.1. Fix X, € X, and fix a function b: (0,00) — (0,00). In the t-th iteration
with X;_1 = x:

(i) Calculate w(z,y) = b(n(y)/m(x)) for every y € Ny;
(ii) Draw X; from N, with probability proportional to w(z,y).

Clearly, (X:):>0 generated from the above algorithm is a Markov chain with transition

probability
bg;r((;))) L, (y), where Zy(x) = 3 b (7;((2 ))> (1)

' €N

pb(x7 y) -

In most cases, we want to use a monotone nondecreasing function b so that this Markov
chain can quickly move to high-posterior regions. The transition matrix described by
is also called an “informed proposal scheme” [11] since the transition probabilities depend
on the local landscape of 7. Of course, (X;);>o probably does not have 7 as the stationary
distribution. But it turns out that as long as b satisfies a property, we can use importance
sampling to correct for the bias.

Definition 7.1. We say a function b: (0,00) — (0, 00) is a balancing function if

b(r) =rb(r™), Vr>0.

Examples of balancing functions include

bry=1+r, b(r)= , b(ry=+/r, b(r)=1Ar, blr)y=1Vr.
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Theorem 7.2. Suppose b is a balancing function. Then (X;)i>0 generated from Algom'thm
has stationary distribution
mp(x) o< w(x) Zy(x).

Hence, the importance weight of x is given by 1/Z,(x).
Proof. Try it yourself. O

So to estimate 7(h), one can pick any balancing function b, run Algorithm and then

compute the estimator
Z?:l 1/Zb(Xi)

An application of this method to variable selection, named tempered Gibbs sampler,
was proposed in [12]; they used b(r) = 1 + r and used “importance tempering” to refer to
such an MCMC technique. The work of [7] considered modification of Metropolis—Hastings
schemes using Algorithm [7.1] which corresponds to b(r) = 1 A7 (see Section [7.3.3). The
convergence rate of the estimator given in for general unimodal target distributions was
studied in [13], and it was found that b(r) = /7 tends to be more robust than other choices
such as b(r) = 1+ r. More sophisticated versions of this algorithm have also been proposed;
see [0, 2, [4], and one example is given below.

7.3.2 Importance Correction for Multiple-try Proposals

We have discussed in Unit 3 the multiple-try Metropolis algorithm. Conceptually a multiple-
try proposal can be viewed as an informed proposal applied to a random neighborhood. It
turns out that the importance tempering technique can applied as well, which leads to a
rejection-free multiple-try algorithm [4] that is applicable to any state space.

Algorithm 7.2 (multiple-try importance tempering). Let X be arbitrary and the proposal
density ¢(z,y) be given; suppose ¢(z,y) > 0 whenever ¢(y,x) > 0. Fix a balancing function
b and a positive integer m (the number of tries). Given Xy, generate a set Sy consisting of
m other states. In the ¢-th iteration with X;_; =z,5;_1 = S:

(i) For every y € S, calculate

a(z.y) = b (W(y)Q(y,x)> _

m(x)q(z,y)
(ii) Calculate Z(z,8) = > s a(z,y).

(iii) Set the importance weight of X; =z to 1/Z(z,S).

(v

(vi

)
)

(iv) Draw X; = 2’ from S with probability proportional to a(zx,z’).
) Draw yy,...,y., 4 i.i.d. from the proposal distribution Q (X4, ).
)

Set St - {yiu <o )y;n—l»x}'
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To prove that this algorithm is correct, we view it as a bivariate Markov chain (X, S;)
and find that it is reversible with respect to

#(2,8) o () 2(2, 8) [T ate. ). 3)

yeS

Then we define 7(z,S) o m(z) [ es (@, y), which shows that 1/Z(x,S) is the importance
weight we need. Note that the set S is used as an auxiliary variable.

Exercise 7.2. Show that Algorithm [7.2 is reversible with respect to (3.

7.3.3 A Remark on Metropolis—Hastings Schemes

Consider a Metropolis—Hastings algorithm with proposal ¢(z,y) defined on a general state
space. Let (X;);>o be the samples generated from this sampler and let (Y;);>o denote the
accepted moves. That is, writing Yy = Xy and 7(0) = 0, we define for each t > 1,

Y; = Xr), where 7(t) = min{i > 7(t —1): X; # Vi1 }.

If we want to estimate m(h), we can use the estimator

o LNy - i MYV
Tn(h) = ; h(X;) = Z;[:l W, (4)

where T'= max{i: 7(i) < n} and W; is the number of iterations the chain has stayed on Y;.
Note that we can express W; by W; = (7(i+1) A(n+1)) —7(i). The second characterization
of 7, (h) is the form of an importance sampling estimator, and we now justify that 7; indeed
gives the correct importance weight (which is expected since otherwise Metropolis—Hastings
schemes are biased).

Observe that (Y;) is also a Markov chain with transition density p such that for y # z,

D _—q(x,y)oz(x,y) x) = x,2)a(z, z)dz
pr.g) = BGEED 2(0) = [ e ot )

where of course a(z,y) denotes the acceptance probability. We know that Metropolis—
Hastings schemes are invariant with respect to m due to the detailed balance condition:

m(x)q(z,y)a(r,y) = 7(y)q(y, v)a(y, ).

But this also immediately implies that p is invariant with respect to 7(z) x w(z)Z(z).
Hence, if we only collect the accepted moves, (Y;), of the Metropolis—Hastings chain, then
the exact importance weight of Y; = y is equal to Z(y)~!. The last observation to make is
that, given Y; = y, W; is a geometric random variable with success probability Z(y), and
thus the expectation of W; equals Z(y)~'. Hence, we can think of the Metropolis—Hastings
algorithm as a Markov chain with transition density p and stationary distribution 7, and it
uses geometric random variables to estimate the importance weight of each sample.

5
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This importance sampling perspective is more general, since we can then improve the

estimator by reducing the variance of the importance weight estimate (i.e., W;). For
example, the algorithm we discussed in Section simply calculates this importance weight
exactly (which is possible on finite spaces). More sophisticated schemes on continuous spaces
have also been developed; see, e.g., [11, 3].
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