
Unit 6: More Examples of MCMC Sampling Schemes

6.1 Core Principles

Consider a target probability distribution π(x) defined on X , which may be difficult to sample
from for various reasons (e.g. multimodality, non-log-concavity, double intractability). The
key idea underlying most of the more sophisticated MCMC sampling schemes is to augment
the state space and consider another target probability distribution π̃(x, y) defined on X ×Y .
Let (Xt, Yt)t≥1 be a Markov chain with stationary distribution π̃(x, y). If π̃(x, y) satisfies any
of the following three conditions, (Xt, Yt)t≥1 can be used to approximate π(x):

(i)
∫
π̃(x, y)dy = π(x) for every x ∈ X .

(ii) Y is finite, and π̃(x, y0) = c π(x) for some y0 ∈ Y , c > 0 and every x ∈ X .

(iii) there exists another distribution π̄(x, y) such that (a)
∫
π̄(x, y)dy = π(x) for every x,

and (b) π̄(x, y)/π̃(x, y) is known or easy to evaluate up to a normalizing constant.

If π̃ satisfies (i), then we simply ignore the samples (Yt)t≥1 and use (Xt)t≥1 to approximate
π(x). If π̃ satisfies (ii), then we only use {Xt : Yt = y0}. If π̃ satisfies (iii), then we can
use importance sampling. In this unit, we focus on examples that satisfy (i) or (ii). In
Remark 6.1, we will see one example of the third case, with more examples and detailed
discussion to follow in the next unit.

6.2 Examples

Two examples we have already studied are pseudo-marginal MCMC and proximal sampling;
both augment the state space and target some π̃(x, y) satisfying condition (i) above. Below
we give more examples.

Example 6.1 (slice sampling). We assume that π(x) = Cf(x) for some unknown constant
C and known function f . Let Y = (0,∞) and define

π̃(x, y) = C1(0,f(x))(y).

Then π̃ has π(x) as a marginal distribution since∫ ∞
0

π̃(x, y)dy =

∫ ∞
0

C1(0,f(x))(y)dy = Cf(x).

Slice sampling proposed by [11] is an MCMC sampling scheme targeting π̃(x, y). Its transition
kernel can be written as P = P1P2 where P2 updates y from the conditional distribution
π̃Y |X(· |x), which is just the uniform distribution on (0, f(x)). The kernel P1 can be any
kernel that updates x and is invariant with respect to the conditional distribution π̃X |Y (· | y),
which is the uniform distribution on

Sy = {x ∈ X : y < f(x)};
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the set Sy is called a “slice.” For example, if X = R, we can let P1((x, y), ·) be the distribution
corresponding to the following procedure where w > 0 is a fixed constant:

(1) Draw u from Unif(0, 1).

(2) Set I = (x− wu, x+ w(1− u)) ∩ Sy.

(3) Draw x′ uniformly from I (e.g. by rejection sampling).

(4) Return (x′, y).

More efficient (and complicated) schemes are described in [11]. A similar idea has been
utilized in [8] for improving the Hamiltonian Monte Carlo sampler.

Example 6.2 (Swendsen–Wang algorithm). Let G = (V,E) be an undirected graph with
node set V and edge set E (since edges are undirected, we can assume that if (i, j) ∈ E, then
(j, i) /∈ E). Define a probability distribution π on {0, 1}V by

π(x) ∝ exp

β ∑
(i,j)∈E

1{xi=xj}

 =
∏

(i,j)∈E

e
β1{xi=xj} ,

where β > 0 is a constant. This is known as the Ising model. Introduce an auxiliary variable
U ∈ RE, and define a joint distribution by

π̃(x, u) ∝
∏

(i,j)∈E

1{0 < ui,j < e
β1{xi=xj}}. (1)

This is just a multivariate version of the construction of π̃ in slice sampling, and thus π̃ has
π(x) as the marginal distribution.

Define another auxiliary variable Y ∈ {0, 1}E by yi,j = 1{ui,j>1}. Swendeson–Wang
algorithm [12] is the Gibbs sampler targeting the joint distribution of X, Y under π̃. Given
X = x, {Yi,j : (i, j) ∈ E} are independent, and

π̃(Yi,j = 0 |X = x) =

{
1, if xi 6= xj,
e−β, if xi = xj.

Consider the conditional distribution of X given Y = y. If yi,j = 1, we must have xi = xj.
If yi,j = 0, which means ui,j ∈ (0, 1), the indicator function in (1) is 1 regardless of whether
xi = xj, and thus all possible values of x are equally likely. So we can sample X from the
conditional distribution given Y = y using the following procedure:

(1) Let H = (V,E) be a copy of G. For every edge (i, j) ∈ E, remove it from H if yi,j = 0.
Denote the resulting edge set of H by EH .

(2) Identify the connected components of H, i.e., sub-graphs H1 = (V1, E1), . . . , Hn =
(Vn, En) such that {V1, . . . , Vn} is a partition of V (i.e., Vk’s are disjoint and their union
equals V ) and {E1, . . . , En} is a partition of EH .
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(3) For each connected component Hk = (Vk, Ek), with probability 1/2, set xi = 0 for every
i ∈ Vk; with probability 1/2, set xi = 1 for every i ∈ Vk.

For generalization of Swendeson–Wang algorithm, see, e.g.,[2].

Example 6.3 (Hamming ball sampler). Let X = {0, 1}d. Fix an integer m > 0, and for
each x, let

Bm(x) = {x′ ∈ X : ‖x− x′‖1 ≤ m}
denote the Hamming ball centered at x with radius m. Let C denote number of points in
B(x), which is a constant independent of x. The Hamming ball sampler [13] is the Gibbs
sampling scheme targeting the joint distribution

π̃(x, y) = C−1π(x)1Bm(x)(y).

Note that
∑

y π̃(x, y) = C−1π(x)
∑

y 1Bm(x)(y) = π(x). The conditional distribution π̃Y |X(· |x)
is simply the uniform distribution on Bm(x). The conditional distribution π̃X |Y (· | y) is given
by

π̃X |Y (x | y) ∝ π(x)1Bm(x)(y) = π(x)1Bm(y)(x).

Exact sampling from π̃X |Y (· | y) requires us to evaluate π(x) for each x ∈ Bm(y). This is
possible as long as dm is not too large.

Example 6.4 (simulated tempering). Let Y = {0, 1, . . . , K} be finite and choose a sequence
of constants 1 = τ0 < τ1 < · · · < τK <∞. Define

π̃(x, y) ∝ κyπ(x)1/τy ,

where (κy)
K
y=0 is another sequence of positive constants. When y = 1, the conditional distri-

bution of X coincides with π(x). A larger value of τ makes the distribution π(x)1/τ flatter,
and we often refer to τ as the “temperature.” Simulated tempering is a Metropolis–Hastings
algorithm targeting π̃ [10]. Let Q(x, ·) denote the proposal scheme one would use to sample
from π(x). Then, we construct the proposal scheme for π̃ as follows:

(1) with probability ρ ∈ (0, 1), we propose (x′, y) where x′ is drawn from the proposal
distribution Q(x, ·);

(2) with probability 1 − ρ, we propose (x, y′) where y′ = y ± 1 with each option having
probability 0.5 (if y′ < 0 or y′ > K, the proposal is immediately rejected).

When making a proposal of the first type, the acceptance probability is given by

α((x, y), (x′, y)) = min

{
1,

(
π(x′)

π(x)

)1/τy q(x′, x)

q(x, x′)

}
.

For the proposal of the second type,

α((x, y), (x, y′)) = min

{
1,
κy′

κy
π(x)

1
τy′
− 1
τy

}
.
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So the acceptance probability highly depends on the constants (κy), the tuning of which
is often a major challenge to the application of simulated tempering. Another important
question is how to choose the temperature ladder (τy)

K
y=0. A popular approach is to use a

geometric sequence, i.e., τy = βτy−1 for some fixed β > 1. There is a large body of literature
on how to choose (τy) and (κy); see, e.g., [5, 1, 9].

Remark 6.1. Let (Xt, Yt)t≥1 be samples from the simulated tempering algorithm. To esti-
mate π(f) =

∫
f(x)π(x)dx, we can of course just use samples {Xt : Yt = 0} since they should

asymptotically follow the distribution π(x). However, note that the other samples can be
utilized as well by importance sampling. Indeed, let (ηy)

K
y=0 be another sequence of positive

constants, and let’s define
π̄(x, y) ∝ ηyπ(x),

which, trivially, has π(x) as the marginal. We can then calculate the importance weight of
each sample (Xt, Yt) by

π̄(x, y)

π̃(x, y)
∝ ηy
κy
π(x)−1/τy .

How to choose (ηy), however, is a difficult question, and was studied in [6].

Example 6.5 (parallel tempering). Parallel tempering, also known as Metropolis-coupled
MCMC or replica exchange algorithm, is very similar to simulated tempering. The major
difference is that we now run K + 1 chains in parallel at temperatures τ0, τ1, . . . , τK instead
of running one single chain with temperature dynamically adjusted. So let’s define a target
distribution π̃ on XK+1 by

π̃(x0, x1, . . . , xK) ∝
K∏
k=0

π(xk)
1/τk .

To construct an MCMC algorithm targeting π̃, a simple scheme is to update each xk in turn
using a Metropolis–Hastings step with the proposal scheme Q. In this case, the K+1 coordi-
nates will just evolve independently of each other. But the motivation of parallel tempering,
similar to simulated tempering, is to improve the mixing by letting chains at different tem-
peratures exchange information. To achieve this, let’s introduce another updating scheme.
Let (x0, . . . , xK) be the current state.

(1) Choose i < j uniformly from {0, 1, . . . , K}.

(2) Propose to swap xi with xj. Denote the resulting state by

x′ = (x0, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xK).

(3) Accept x′ with probability

α(x, x′) = min

{
1,
π̃(x′)

π̃(x)

}
= min

{
1,

(
π(xi)

π(xj)

) 1
τj
− 1
τi

}
.
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Example 6.6 (non-reversible Metropolis–Hastings). The last example is special in the sense
that it does not fit within the Metropolis–Hastings or Gibbs frameworks we have discussed
so far. It is an example of non-reversible MCMC algorithms, which has gained increasing
popularity [14, 3]. Let X = {0, 1}d and Y = {+,−}. Define

π̃(x,+) = π̃(x,−) =
1

2
π(x).

Define

N+(x) = {x′ ∈ X : ‖x− x′‖ = 1, ‖x′‖ = ‖x‖+ 1},
N−(x) = {x′ ∈ X : ‖x− x′‖ = 1, ‖x′‖ = ‖x‖ − 1}.

Let Q((x,+), ·) be the uniform distribution on {(x′,+): x′ ∈ N+(x)}; so Q+(x, ·) flips a
coordinate currently equal to 0. Similarly, let Q((x,−), ·) be the uniform distribution on
{(x′,−) : x′ ∈ N−(x)}. If there is nothing to propose, then the chain stays at the current
state. We now present an algorithm targeting π̃ which looks similar to the Metropolis–
Hastings algorithm.

(1) Suppose the current state is (x,+). Propose (x′,+) from Q((x,+), ·).

(2) Calculate the acceptance probability

α((x,+), (x′,+)) = min

{
1,
π(x′)q((x′,−), (x,−))

π(x)q((x,+), (x′,+))

}
.

(3) With probability α((x,+), (x′,+)), we move to (x′,+); with probability 1−α((x,+), (x′,+)),
we move to (x,−).

The updating scheme at (x,−) follows analogously, with + and − swapped. Such an al-
gorithm is called non-reversible Metropolis–Hastings or lifted Metropolis–Hastings [4]. The
term “non-reversible” is self-explanatory: the chain may move from (x,+) to (x′,+) for
x′ ∈ N+(x) but can never move from (x′,+) to (x,+).

Theorem 6.1. The algorithm presented in Example 6.6 has stationary distribution π̃(x, y).

Proof. Let p((x, y), (x′, y′)) denote the transition density of the algorithm. Fix some z ∈ X ,
and it suffices to show that ∑

x,y

π̃(x, y)p((x, y), (z,+)) = π̃(z,+).

By the definition of π̃, we need to prove that∑
x

π(x) {p((x,+), (z,+)) + p((x,−), (z,+))} = π(z).
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Observe that p((x,+), (z,+)) is nonzero only if x ∈ N−(z), and p((x,−), (z,+)) is nonzero
only if x = z. Indeed,∑

x

π(x)p((x,+), (z,+)) =
∑

x∈N−(z)

π(x)p((x,+), (z,+))

=
∑

x∈N−(z)

π(x)q((x,+), (z,+))α((x,+), (z,+)),

and ∑
x

π(x)p((x,−), (z,+)) = π(z)p((z,−), (z,+))

=
∑

x∈N−(z)

π(z)q((z,−), (x,−)) [1− α((z,−), (x,−))]

= π(z)−
∑

x∈N−(z)

π(z)q((z,−), (x,−))α((z,−), (x,−)).

It is easy to verify that

π(x)q((x,+), (z,+))α((x,+), (z,+)) = π(z)q((z,−), (x,−))α((z,−), (x,−)),

from which the conclusion follows.

Exercise 6.1. Let S : X → X be an invertible mapping such that S(x) = S−1(x) for every x
and π(S(A)) = π(S−1(A)) = π(A) for every A ∈ B(X ). Suppose a transition kernel satisfies
the skew detailed balance [7]:

π(x)p(x, y) = π(S(y))p(S(y), S(x)).

Then π is a stationary distribution of P .
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