
Unit 5: Gibbs Sampling

5.1 Various Gibbs Sampling Schemes

Let X = X1 × · · · × Xd, and consider a target probability distribution π(x) with x =
(x1, . . . , xd). For clarity, in this unit we will use the following notation. Given a vector
x, we write x−i = (x1, . . . , xi−1, xi+1, . . . , xd). Let πi | −i(· |x−i) denote the conditional distri-
bution of Xi given X−i = x−i, where X follows the distribution π, and similarly, denote the
marginal distribution of Xi by πi and the marginal distribution of X−i by π−i.

Define the transition kernel P1 by

P1(x,B1 ×B−1) = 1B−1(x−1)

∫
B1

π1 | −1(dy1 |x−1)

for any B1 ∈ B(X1) and B−1 ∈ B(X2 × Xd). Define transition kernels P2, . . . , Pd similarly.
Note that equivalently, we can write

Pi(x, dy) = πi | −i(dyi |x−i)δx−i
(y−i).

Hence, we will denote the density of Pi(x, ·) by

pi(x, y) = πi | −i(yi |x−i)1{x−i=y−i},

(If πi | −i(yi |x−i) is with respect to the measure µ on Xi, then pi(x, ·) is the density with
respect to the measure µ× δx−i

on Xi ×X−i.)
The kernel Pi can only modify the i-th coordinate. In Unit 3, we have shown that actually

Pi is a Metropolis–Hastings algorithm which always accepts the proposal, which implies that
Pi is reversible w.r.t π. We can also directly check the detailed balance condition:

π(x)pi(x, y) = π−i(x−i)πi | −i(xi |x−i)πi | −i(yi |x−i)1{x−i=y−i}.

This is symmetric in x, y, since pi(x, y) 6= 0 only when x−i = y−i. So π is a stationary
distribution of Pi (though not unique!), and we can write πPi = π. In Gibbs sampling, we
make use of all the d kernels, P1, P2, . . . , Pd, so that it is possible to move between any two
states. As we have discussed in Unit 3, there are many ways to combine these kernels, which
lead to different “updating schemes” of Gibbs sampling.

Example 5.1 (deterministic sweep). Consider the Gibbs sampler with transition kernel
P = P1P2 · · ·Pd. In each step of this Gibbs sampler, we update x1, . . . , xp sequentially. For
example, suppose d = 2 and the current state is x = (x1, x2). We first generate y1 from
the conditional distribution given x2 and then generate y2 from the conditional distribution
given y1. Since πPi = π for each i, we have πP = π. Note that this Gibbs sampler is usually
not a reversible Markov chain (check that the detailed balance condition does not hold).

Example 5.2 (reversible sweep). The transition kernel P = P1P2 · · ·Pd−1PdPd−1 · · ·P2P1

also clearly has π as the stationary distribution. Further, P is reversible with respect to π.
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Example 5.3 (random scan). This was discussed in Unit 3. Random scan Gibbs sampler is
the Markov chain with the kernel P = d−1 (P1 + · · ·+ Pd) . This is also reversible.

Example 5.4 (random permutation). A more complicated reversible updating scheme can
be constructed as follows. In each iteration, we generate an order τ uniformly from the
symmetric group on {1, 2, . . . , d} and update the d coordinates according to τ . The resulting
kernel can be writting as

P =
1

d!

∑
τ

Pτ(1) · · ·Pτ(d).

Exercise 5.1. Give an example where

π(x1, x2)π1 | 2(y1 |x2)π2 | 1(y2 | y1) 6= π(y1, y2)π1 | 2(x1 | y2)π2 | 1(x2 |x1).

This shows that the deterministic sweep Gibbs sampler is not reversible.

5.2 Gibbs Sampling for Multivariate Normal Targets

5.2.1 Convergence Rates

Let X = Rn be our state space, and let π be the d-dimensional multivariate normal distri-
bution N(µ,Σ). Assume Σ is invertible. Write X = X1 × · · · × Xd where Xi = Rni , and
n1 + · · ·+ nd = n. Partition the covariance matrix Σ accordingly:

Σ =


Σ11 Σ12 · · · Σ1d

Σ21 Σ22 · · · Σ2d
...

...
. . .

...
Σd1 Σd2 · · · Σdd,


where Σij has dimension ni × nj. Similarly, let Q = Σ−1, and let Qij denote the (i, j)-th
block of Q. Note that by the block matrix inversion formula,

Q−111 = Σ11 −
[
Σ12 · · · Σ1d

] Σ22 · · · Σ2d
...

. . .
...

Σd2 · · · Σdd


−1 Σ21

...
Σd1

 ,

Q−111

[
Q12 · · · Q1d

]
= −

[
Σ12 · · · Σ1d

] Σ22 · · · Σ2d
...

. . .
...

Σd2 · · · Σdd


−1

.

Let X = (X1, . . . , Xd) denote the current sample, and consider the deterministic sweep
Gibbs sampler which updates X1, . . . , Xd sequentially. Denote the resulting new vector by
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Y = (Y1, . . . , Yd). Since Y1 is drawn from the conditional distribution given X2, . . . , Xd, we
can write

Y1 = µ1 −Q−111

[
Q12 · · · Q1d

] X2 − µ2
...

Xd − µd

+Q
−1/2
11 Z1,

where Z1 follows the standard normal distribution N(0, In1) independently of other variables.
Similarly, Y2 is drawn from the conditional distribution given Y1 and X3, . . . , Xd, which yields

Y2 = µ2 −Q−122

[
Q21 Q23 · · · Q1d

]

Y1 − µ1

X3 − µ3
...

Xd − µd

+Q
−1/2
22 Z2.

Repeating this calculation and doing some algebra, we obtain the following lemma [3].

Lemma 5.1. Define the block diagonal matrix D = diag(Q11, Q22, . . . , Qdd). Let A =
I − D−1Q, and denote the lower triangular and upper triangular parts of A by L and U ,
respectively (note that the diagonal blocks of A are zeros). Define B = (I −L)−1U . Then we
can write the deterministic sweep Gibbs update as

Y ∼ N(BX + (I −B)µ, Σ−BΣB>).

It was shown in [3] that the convergence rate of the deterministic sweep Gibbs sampler
is determined by the spectral radius (maximum eigenvalue in absolute value) of the matrix
B in Lemma 5.1; denote the spectral radius by ρ(B). The precise statement is given in
Theorem 5.1.

Theorem 5.1. Let π denote the target distribution N(µ,Σ) and P denote the transition
kernel of the deterministic sweep Gibbs sampler described above. We have

ρ(B) = inf

{
r : lim

t→∞

∫
{(P tf)(x)− π(f)}2π(x)dx

rt
= 0, ∀f ∈ L2(π)

}
.

Proof. See [3].

Note that the smaller ρ(B), the faster convergence the deterministic sweep Gibbs sampler
achieves. Other updating schemes were also studied in [3]. For example, they showed that
the convergence rate of the random scan Gibbs sampler is given by(

d− 1 + λ1(A)

d

)d
,

where λ1(A) denotes the largest eigenvalue of the matrix A in Lemma 5.1.

Exercise 5.2. Prove Lemma 5.1.

Exercise 5.3. Prove that all eigenvalues of A are real and 0 ≤ λ1(A) < 1 (recall that we
assume Σ is strictly positive definite so that Q exists).
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5.2.2 Multilevel Random Effects Models

Suppose we have IJK grouped observations, denoted by {wijk : 1 ≤ i ≤ I, j ≤ 1 ≤ J, 1 ≤
k ≤ K}. Consider the following multilevel random effects model

wijk = µ+ ai + bij + εijk, 1 ≤ i ≤ I, j ≤ 1 ≤ J, 1 ≤ k ≤ K,

εijk
i.i.d.∼ N(0, σ2

e), 1 ≤ i ≤ I, j ≤ 1 ≤ J, 1 ≤ k ≤ K,

bij
i.i.d.∼ N(0, σ2

b ), 1 ≤ i ≤ I, 1 ≤ j ≤ J,

ai
i.i.d.∼ N(0, σ2

a), 1 ≤ i ≤ I,

p(µ) ∝ 1,

where p(µ) ∝ 1 means that we assign an improper prior distribution on µ (uniform over
R). Assume the hyperparameters σ2

a, σ
2
b , σ

2
e are given. It is easy to find the un-normalized

posterior:

−2 log p(µ, a, b |w) = C +
∑
i

a2i
σ2
a

+
∑
i,j

b2ij
σ2
b

+
∑
i,j,k

(wijk − µ− ai − bij)2

σ2
e

,

where C is the unknown normalizing constant. So the joint posterior of µ, a, b is Gaussian,
of which the precision matrix is very easy to write down (find it!), and then we can apply
the theory of the last subsection to numerically find the convergence rate of the deterministic
sweep or random scan Gibbs sampler targeting p(µ, a, b |w).

A more interesting observation is that different parameterizations of this model can lead to
significantly different convergence rates of Gibbs sampling. For example, let’s reparameterize
the model as follows.

wijk = ηij + εijk, 1 ≤ i ≤ I, j ≤ 1 ≤ J, 1 ≤ k ≤ K,

εijk
i.i.d.∼ N(0, σ2

e), 1 ≤ i ≤ I, j ≤ 1 ≤ J, 1 ≤ k ≤ K,

ηij
i.i.d.∼ N(γi, σ

2
b ), 1 ≤ i ≤ I, 1 ≤ j ≤ J,

γi
i.i.d.∼ N(µ, σ2

a), 1 ≤ i ≤ I,

p(µ) ∝ 1.

This model is exactly the same as the previous one: all we have done is to transform the
parameters by the mapping

γi = µ+ ai, ηij = γi + bij.

The posterior can be written as

−2 log p(µ, γ, η |w) = C +
∑
i

(γi − µ)2

σ2
a

+
∑
i,j

(ηij − γi)2

σ2
b

+
∑
i,j,k

(wijk − ηij)2

σ2
e

.

Again, p(µ, γ, η |w) is Gaussian, and we can find the convergence rates of the corresponding
deterministic sweep and random scan Gibbs samplers. Explicit expressions for the conver-
gence rates of deterministic sweep schemes were obtained in [4].

4



Fall 2024 Quan Zhou

Theorem 5.2. Define σ̃2
a = σ2

a/I, σ̃
2
b = σ2

b/IJ, σ̃
2
e = σ2

e/IJK. For the deterministic sweep
Gibbs sampler targeting p(µ, a, b |w), the convergence rate is max{σ̃2

a/(σ̃
2
a+σ̃2

e), σ̃
2
b/(σ̃

2
b +σ̃2

e)}.
For the deterministic sweep Gibbs sampler targeting p(µ, γ, η |w), the convergence rate is
1− σ̃2

aσ̃
2
b/[(σ̃

2
a + σ̃2

b )(σ̃
2
b + σ̃2

e)].

Proof. See [4]

Remark 5.1. This result implies that if σ̃2
a � σ̃2

b � σ̃2
e , then the Gibbs sampling with

parameterization (µ, γ, η) will be very efficient (convergence rate close to 0), while that with
parameterization (µ, a, b) will be very inefficient (convergence rate close to 1). For an intuitive
explanation, consider the extreme case σ2

e = 0, which implies that the value of µ+ ai + bj for
each (i, j) can be exactly determined from the data. If we run the Gibbs sampler with param-
eterization (µ, a, b), the chain will not be able to move at all, since the conditional posterior
distribution of one parameter given the other two is degenerate. In contrast, consider the
parameterization (µ, γ, η). The value of η is completely determined, but the chain can still be
efficient in exploring the posterior distribution of (µ, γ). Of course one can also consider the
parameterizations (µ, γ, b) and (µ, a, η), and the explicit expressions for the convergence rates
were also derived in [4]. Any one of these four parameterizations can be the most efficient
depending on the relations between σ̃2

a, σ̃
2
b , σ̃

2
e . For more details and a more general theory,

see [4].

5.3 Proximal Sampling

Proximal sampling is a class of sampling methods that became popular very recently. Con-
sider a distribution π on Rd with density π(x) ∝ e−f(x). Let’s augment the state space and
consider a joint distribution

π(x, y) ∝ exp

{
−f(x)− 1

2λ
‖x− y‖22

}
, (1)

where λ > 0 is a tuning parameter. As in Section 5.1, we use π1 | 2 and π2 | 1 to denote the
two conditional distributions. Clearly,

π1 | 2(x | y) =
exp

{
−f(x)− 1

2λ
‖x− y‖22

}∫
exp

{
−f(z)− 1

2λ
‖z − y‖22

}
dz
,

and π2 | 1(y |x) is the density of N(x, λId). The proximal sampling algorithm is the Gibbs
sampler that targets π(x, y). Since π(x, y) has π(x) as the marginal distribution, we can
collect samples (Xt, Yt)t≥0 from such a Gibbs sampler and then use (Xt)t≥0 to approximate
the distribution of interest, π(x).

The main challenge is how to perform sampling from the conditional distribution π1 | 2(x | y).
One possible method is to do rejection sampling. If we know π(x) has light tails and we can
find m(x; y, λ) = arg minx{−f(x) − 1

2λ
‖x − y‖22}, then a normal distribution with mean

m(x; y, λ) can be used as an efficient reference distribution [1]. Of course, one can also
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consider more complicated schemes, including running another MCMC sampler targeting
π1 | 2(x | y).

Naturally, one may wonder why such a scheme is useful, since apparently we are converting
one sampling problem (i.e., π(x)) to a class of sampling problems (i.e., {π1 | 2(x | y) : y ∈ Rd}).
To explain the motivation, we need the following definitions.

Definition 5.1. Let f : Rd → R be a differentiable function and α, β > 0. We say f is
β-smooth if ∇f is β-Lipschitz; that is,

‖∇f(y)−∇f(x)‖2 ≤ β‖y − x‖2, ∀x, y ∈ Rd.

We say f is α-strongly convex if

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22, ∀x, y ∈ Rd.

Remark 5.2. If f is twice differentiable, then f is β-smooth and α-strongly convex if

αId � ∇2f(x) � βId, ∀x ∈ Rd,

where the notation A � B means that B−A is positive semi-definite. The ratio κ = β/α ≥ 1
is often called the condition number in the sampling literature. A smaller condition number
implies that π(x) ∝ e−f(x) is easier to sample from, since f is similar to a quadratic function
(and thus π is similar to a normal distribution).

Now assume that f in (1) is twice differentiable, β-smooth and α-strongly convex. So it
has condition number κ(f) = β/α. Fix some y ∈ Rd, λ > 0 and consider

gy(x) = f(x) +
1

2λ
‖x− y‖22.

Then gy is again smooth and strongly convex, and its condition number is

κ(gy) ≤
1 + βλ

1 + αλ
≤ β

α
= κ(f).

If we know β, we can use λ = 1/β, which guarantees that κ(gy) ≤ 2. Hence, the term
‖x− y‖22/(2λ) regularizes the target density and makes it easier to sample from.

Moreover, suppose that f in (1) is twice differentiable and β-smooth, but f may not be
strongly convex. If 1/λ ≥ β, then gy is still strongly convex with condition number

κ(gy) ≤
1 + βλ

1− βλ
.

For more details about the convergence properties of proximal sampling, see, e.g., [2, 1].

Exercise 5.4. Prove that if f is strongly convex, then it is strictly convex.
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