
Unit 4: Reversible-jump and Pseudo-marginal MCMC

In this unit, we discuss two important and more sophisticated MCMC algorithms of
Metropolis–Hastings type (in the sense that an acceptance-rejection step is used to ensure
the correct stationary distribution).

4.1 A Motivating Example for Reversible-jump MCMC

We first review a change-point detection problem that was used in [2] to motivate the
reversible-jump MCMC algorithm.

Model. Consider a non-homogeneous Poisson point process where the arrival rate is given
by an unknown function λ(t) > 0. This means that the number of events happening during
the time period [t1, t2) follows a Poisson distribution with rate parameter

∫ t2
t1
λ(s)ds. Let

our observed data be the arrival times T1 < T2 < · · · < Tn. Assume that Tn ≤ Tmax, where
Tmax is the duration of the observation period. One major application of this model is the
queueing theory, where Ti can be thought of as the arrival time of the i-th customer at
a store. Recall that T1, T2 − T1, T3 − T2, . . . are independent, and T1 has density function

p(T1 |λ) = λ(T1) exp
(
−
∫ T1
0
λ(t)dt

)
. Hence, we can write down the log-likelihood as

log p(D |λ) = −
∫ Tmax

0

λ(t)dt+
n∑
i=1

log λ(Ti), (1)

where D = (T1, . . . , Tn) denotes our data.
Our goal is to learn λ(t), which we model as a positive step function with break points

b0 = 0 < b1 < b2 < · · · < bK < Tmax = bK+1.

On t ∈ [bi−1, bi), we have λ(t) = hi−1 for some constant hi−1 > 0. So to learn λ(t) means
to identify the parameter vector θ = (b1, . . . , bK , h0, h1, . . . , hK). The length of this vector
is 2K + 1. Denote the likelihood of θ by p(D | θ), which can be calculated by (1) with
λ(t) replaced by the step function corresponding to θ. We want to compute the posterior
distribution p(θ |D) ∝ p(D | θ)p(θ), where p(θ) denotes the prior.

Proposal Scheme. Consider the following four types of proposal moves:

(a) Change bk for some 1 ≤ k ≤ K.

(b) Change hk for some 0 ≤ k ≤ K.

(c) Add a break point b∗ ∈ (bk, bk+1) for some 0 ≤ k ≤ K and change λ(t) on t ∈ [bk, bk+1).

(d) Remove a break point bk for some 1 ≤ k ≤ K and change λ(t) on t ∈ [bk−1, bk+1).
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An MCMC sampler with these four proposals will be able to explore the space of all positive
step functions on [0, Tmax). Moves of type (a) and (b) are straightforward to implement,
but moves of type (c) and (d) can be complicated. In [2], the following scheme is used for
implementing a type (c) move, where θ = (b1, . . . , bK , h0, . . . , hK) denotes the current state.

(i) Draw b∗ from [0, Tmax). We have b∗ ∈ [bk, bk+1) for some k.

(ii) Set the new parameter vector to θ′ = (b′1, . . . , b
′
K+1, h

′
0, . . . , h

′
K+1), where

b′i =


bi, if i ≤ k,
b∗, if i = k + 1,
bi−1, if i ≥ k + 2.

h′i =

{
hi, if i ≤ k − 1,
hi−1, if i ≥ k + 2.

Note that h′k, h
′
k+1 have not been determined yet.

(iii) Draw u ∼ Unif(0, 1).

(iv) Set h′k+1 = h′k(1− u)/u.

(v) Find h′k by solving

(b∗ − bk) log(h′k) + (bk+1 − b∗) log(h′k+1) = (bk+1 − bk) log hk.

The main motivation behind this scheme is that we want to propose h′k, h
′
k+1 such that the

new step function does not look too different from the current one on the interval [bk, bk+1);
otherwise, the acceptance rate of the resulting sampler tends to be low. Other schemes
are of course possible. For example, one can generate u ∼ Unif(0, 1), and set h′k = 2hku,
h′k+1 = 2hk(1 − u) so that the average of h′k, h

′
k+1 is always equal to hk. An important

observation is that steps (i) to (iv) define a one-to-one differentiable mapping from (b∗, u, hk)
to (b′k+1, h

′
k, h

′
k+1) for any b∗ ∈ [bk, bk+1).

Similarly, when we make a type (d) proposal, we reverse this process. If the current state
is θ′ as generated above and we propose to delete b′k+1, the resulting new state will be θ.

Proposal Densities. Now let’s calculate the proposal density of the procedure described
by steps (i) to (iv). First, denote the probability of making a type (c) move when the
current function has K break points by q(K,K + 1), which is allowed to depend on K.
Let qc(θ, (b

∗, u)) denote the density of proposing b∗, u in a type (c) proposal. The product
q(K,K + 1)qc(θ, (b

∗, u)) is the density of proposing a type (c) move with new break point b∗

and auxiliary variable u. We know that θ′ is determined by θ, b∗, u, so it seems that we can
obtain the proposal density q(θ, θ′) by taking into account the effect of the transformation
u 7→ (h′k, h

′
k+1). But here we encounter a dimensionality issue: the distribution of (h′k, h

′
k+1)

is degenerate and does not have a density with respect to the Lebesgue measure on R2. To
circumvent this difficulty, let’s match the dimension by pretending that hk is random, which
enables us to apply the change-of-variable formula. This yields

q(θ, θ′) = q(K,K + 1)qc(θ, (b
∗, u))

hk
(h′k + h′k+1)

2
,

2
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where the last term is the Jacobian determinant of the transformation (h′k, h
′
k+1) 7→ (u, hk).

The proposal density of moving from θ′ to θ is

q(θ′, θ) = q(K + 1, K)qd(θ′, k + 1)

where q(K+1, K) is the probability of making a type (d) proposal when the current function
has K + 1 break points, and qd(θ′, k + 1) denotes the probability of deleting the break point
b′k+1. Note that q(θ, θ′) and q(θ′, θ) are NOT comparable, since they are densities on spaces
of different dimensions. The length of θ is 2K + 1, while that of θ′ is 2K + 3.

Acceptance Probability. If we ignore this dimensionality issue and still proceed to cal-
culate the acceptance probability in the usual way, we get

α(θ, θ′) = min

{
1,

p(D | θ′)p(θ′)
p(D | θ)p(θ)

q(θ′, θ)

q(θ, θ′)

}
= min

{
1,

p(D | θ′)p(θ′)
p(D | θ)p(θ)

q(K + 1, K)qd(θ′, k + 1)

q(K,K + 1)qc(θ, (b∗, u))

(h′k + h′k+1)
2

hk

}
.

This turns out to be correct, and such a dimension-jumping Metropolis–Hastings algorithm
is known as reversible-jump MCMC.

4.2 Reversible-jump MCMC

We now formally introduce the reversible-jump algorithm of [2]. Let the target distribution
be π(m, θ) = π(m)π(θ |m), where m can be thought of as the model taking values in a finite
space M, and θ ∈ Rd(m) can be thought of as the parameter of the model m, where d(m)
is the dimension of the parameter of model m. We assume that π(θ |m) is the density with
respect to the Lebesgue measure on Rd(m).

Suppose that at each (m, θ), we can propose the next state using the following scheme.

(i) Draw m′ with probability q(m,m′).

(ii) Suppose that d(m′) > d(m). Then, we draw w ∈ Rd(m′)−d(m) with density qm→m′(θ, w)
and set θ′ = fm→m′(θ, w), where fm→m′ is a differentiable bijective function.

(iii) Accept θ′ with probability α((θ, w), θ′).

The proposal move from (m′, θ′) to (m, θ) is implemented by reversing the above calculations.
That is, we first draw m with probability q(m′,m) and then calculate (θ, w) = f−1m→m′(θ′).
We accept θ with probability α(θ′, (θ, w)), and the auxiliary variable w is discarded.

Recall that this algorithm is reversible with respect to π if∫
θ∈A

π(m, θ)P ((m, θ), (m′, B))dθ =

∫
θ′∈B

π(m′, θ′)P ((m′, θ′), (m,A))dθ (2)

for any A ∈ B(Rd(m)), B ∈ B(Rd(m′)). We now use (2) to find the expression of α.

3
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Without loss of generality we assume d(m′) > d(m). According to the proposal scheme
described above,

P ((m, θ), (m′, B)) = q(m,m′)

∫
Eθ

qm→m′(θ, w)α((θ, w), θ′)dw

where θ′ = fm→m′(θ, w) and Eθ = {w : fm→m′(θ, w) ∈ B}. Hence,∫
θ∈A

π(m, θ)P ((m, θ), (m′, B))dθ

=

∫
(θ,w)∈E

π(m, θ)q(m,m′)qm→m′(θ, w)α((θ, w), θ′)dθdw,

where
E = {(θ, w) : θ ∈ A, fm→m′(θ, w) ∈ B} .

Because fm→m′ is differentiable and bijective, we can perform a change of variable from (θ, w)
to θ′ = fm→m′(θ, w), i.e.,

dθ′ =

∣∣∣∣det

(
∂θ′

∂(θ, w)

)∣∣∣∣ dθdw.
This yields ∫

θ∈A
π(m, θ)P ((m, θ), (m′, B))dθ

=

∫
θ′∈F

π(m, θ)q(m,m′)qm→m′(θ, w)α((θ, w), θ′)

∣∣∣∣det

(
∂θ′

∂(θ, w)

)∣∣∣∣−1 dθ′, (3)

where (θ, w) = f−1m→m′(θ′), and

F =
{
θ′ : θ′ ∈ B, f−1m→m′(θ

′) ∈ A× Rd(m′)−d(m)
}
.

We need to make this equal to the right-hand side of (2), which can be written as∫
θ′∈F

π(m′, θ′)q(m′,m)α(θ′, (θ, w))dθ′. (4)

Note that no auxiliary variable needs to be sampled when moving back from θ′ to θ. Com-
paring (3) with (4), we see that all we need is

α((θ, w), θ′)

α(θ′, (θ, w))
=

π(m′, θ′)q(m′,m)

π(m, θ)q(m,m′)qm→m′(θ, w)

∣∣∣∣det

(
∂θ′

∂(θ, w)

)∣∣∣∣ .
This holds if we set

α((θ, w), θ′) = min

{
1,

π(m′, θ′)q(m′,m)

π(m, θ)q(m,m′)qm→m′(θ, w)

∣∣∣∣det

(
∂θ′

∂(θ, w)

)∣∣∣∣} , (5)

α(θ′, (θ, w)) = min

{
1,

π(m, θ)q(m,m′)qm→m′(θ, w)

π(m′, θ′)q(m′,m)

∣∣∣∣det

(
∂(θ, w)

∂θ′

)∣∣∣∣} . (6)

This is known as the reversible-jump MCMC algorithm. To summarize:

4
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Theorem 4.1. The reversible-jump MCMC algorithm has stationary distribution π(m, θ),
provided that the acceptance probability is calculated by (5) and (6).

Remark 4.1. The general methodology described in this section does not fully justify the
MCMC algorithm considered in Section 4.1 for the change-point detection problem, though
that can be justified by essentially the same reasoning. For the change-point problem, we
can think of K as the model, and our target posterior distribution is p(K, θ |D) where
θ = (b1, . . . , bK , h0, . . . , hK). When we insert a break point, we sample b∗ (location of the
new break point) and u (auxiliary variable) and then compute the mapping (θ, b∗, u) 7→ θ′.
However, this mapping is not bijective, since to move back, we need to know which break
point to delete. So it is better to think of the generation of (b∗, u) as a two-step procedure:
we first decide which interval [bk, bk+1) contains the new break point, and then sample b∗

(restricted to this interval) and u. Once the interval [bk, bk+1) is selected, the mapping
(b∗, u, hk) 7→ (b′k+1, h

′
k, h

′
k+1) becomes bijective, with all other parameters treated as fixed.

Similarly, when reducing K, we need to first sample which break point to delete and then
perform a deterministic calculation to obtain the new parameter vector.

4.3 Pseudo-marginal MCMC

Essentially, pseudo-marginal MCMC is a generalization of Metropolis–Hastings sampling
where we replace π(x) with an unbiased estimator of it. Denote such an estimator by π̂(x)
and its distribution by Fx. Actually, it only needs to be unbiased up to a normalizing constant
(which makes the resulting algorithm useful for, e.g., Bayesian posterior calculations); this
means that E[π̂(x)] =

∫
π̂Fx(dπ̂) = Cπ(x) where C > 0 is a constant independent of x

Algorithm 4.1 (Pseudo-marginal MCMC). Initialize the sampler at some X0 = x0 and
estimator π̂(x0). For t = 1, 2, . . . ,

(i) Sample Y from the distribution Q(Xt−1, ·).

(ii) Given Y = y, generate π̂(y).

(iii) Calculate the acceptance probability

α̂ = min

{
1,

π̂(y)q(y, xt−1)

π̂(xt−1)q(xt−1, y)

}
.

(iv) With probability α̂, set Xt = y and π̂(xt) = π̂(y); with probability 1− α̂, set Xt = xt−1
and π̂(xt) = π̂(xt−1).

Particular attention should be given to step (iv). No matter whether we accept the
proposed state y or stay at the previous state xt−1, we will keep using π̂(y) or π̂(xt−1) in the
next iteration. This is crucial to ensuring that the algorithm is invariant with respect to π,
which we prove below.

5
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Theorem 4.2. Under the unbiasedness assumption on π̂(x), (Xt)t≥0 generated from the
pseudo-marginal MCMC algorithm has stationary distribution π.

Proof. Our strategy for proving this result is different from the previous proofs. The main
idea is to view the pseudo-marginal MCMC algorithm as a bivariate Markov chain and show
that its invariant distribution has π(x) as the marginal. This technique is very important
and will be often used in later units.

First, let’s define Ux = π̂(x)/π(x), and denote the density of Ux by r(x, ux). Generating
π̂(x) is equivalent to generating the random variable Ux, and since π̂(x) is unbiased, we have∫

uxr(x, ux)dux = C,

for some fixed constant C > 0. (Of course, we cannot observe the value of Ux in practice.)
Now we view the pseudo-marginal MCMC algorithm as targeting the joint distribution

π̄(x, ux) = C−1uxr(x, ux)π(x).

According steps (i) and (ii), the proposal density from (x, ux) to (y, uy) is given by

q((x, ux), (y, uy)) = q(x, y)r(y, uy).

If we calculate the acceptance probability as in the standard Metropolis–Hastings algorithm,
we get

α((x, ux), (y, uy)) = min

{
1,
π̄(y, uy)q((y, uy), (x, ux))

π̄(x, ux)q((x, ux), (y, uy))

}
= min

{
1,
uyr(y, uy)π(y)q(y, x)r(x, ux)

uxr(x, ux)π(x)q(x, y)r(y, uy)

}
= min

{
1,
π̂(y)q(y, x)

π̂(x)q(x, y)

}
,

which coincides with the expression given in the step (iii). That is, pseudo-marginal MCMC is
a standard Metropolis–Hastings algorithm with stationary distribution π̄(x, ux). When run-
ning this algorithm, we only collect the samples X0, X1, . . . , but their stationary distribution
is just the marginal distribution of π̄(x, u), which is π(x).

Example 4.1. Here is a typical scenario in Bayesian statistics where pseudo-marginal MCMC
can be helpful. Consider a joint posterior distribution π(x, z), where x is the parameter of
interest (e.g. x can be the model in a model selection problem, and z is the parameter
associated with model x). We want to directly sample from the marginal distribution π(x),
which requires us to compute the integral π(x) =

∫
π(x, z)dz up to a normalizing constant.

In some cases, we can use a conjugate prior on z given x and this integral has a closed-
form expression; one example is the spike-and-slab variable selection discussed in Unit 3.
However, very often

∫
π(x, z)dz is difficult to compute, in which case the distribution π(x)

6
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is described as doubly intractable [3]. One simple example is variable selection for logistic
regression (instead of linear regression), which was considered in [1]. We can always construct
an unbiased estimator for

∫
π(x, z)dz using importance sampling. Letting Z1, Z2, . . . , Zn be

i.i.d. samples from a distribution with density g(z), we can express our estimator by

π̂(x) =
1

n

n∑
i=1

π(x, Zi)

g(Zi)
.

Then we can use pseudo-marginal MCMC to sample from π(x). We can further generalize
this method by using dependent samples generated sequentially, which we describe in the
exercise below. Application of this sequential importance sampling technique to pseudo-
marginal MCMC was studied in [1].

Remark 4.2. Consider the model selection problem discussed for reversible-jump MCMC.
Let’s write

π(m, θ) = C p(D |m, θ)p(θ |m)p(m)

where C is the normalizing constant, D is the data, p(D |m, θ) is the likelihood of (m, θ),
p(m) is the prior probability of the model m, and p(θ |m) is the conditional prior density
of θ given model m. Reversible-jump MCMC aims at directly sampling from π(m, θ), while
pseudo-marginal MCMC aims at the marginal distribution

π(m) = C p(m)

∫
p(D |m, θ)p(θ |m)dθ,

where the integral needs to be unbiasedly estimated.

Exercise 4.1. Let I =
∫
R f(z)dz < ∞. Let Z1, Z2, . . . , Zn be generated from a Markov

chain; denote the density of Z1 by g(z1) and the density of Zi given Zi−1 = zi−1 by g(zi−1, zi).
Assume that p(z), p(z, z′) > 0 everywhere. Define

Î =
1

n

(
f(Z1)

g(Z1)
+

n∑
i=2

f(Zi)

g(Zi−1, Zi)

)
.

Show that Î is an unbiased estimator of I.
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