
Unit 3: Examples of Metropolis–Hastings-type Algorithms

3.1 Examples of Metropolis–Hastings Algorithms

In the last unit, we constructed Metropolis–Hastings algorithms targeting a probability dis-
tribution π defined on the space X , and we found the optimal acceptance probability function
according to Peskun ordering. We summarize it in Algorithm 3.1 and discuss a few common
choices of the proposal scheme. Note that to implement Algorithm 3.1, we only need to be
able to evaluate π(x) up to a normalizing constant, which makes it useful for application to
Bayesian statistics. Recall that we always assume the densities q(x, y) = Q(x, dy)/µ(dy) and
π(x) = π(dx)/µ(dx) exist.

Algorithm 3.1 (Metropolis–Hastings algorithm). Initialize the sampler at some X0 (which
can be deterministic or stochastic). For t = 1, 2, . . . ,

(i) Sample Y from the distribution Q(Xt−1, ·).

(ii) Calculate the acceptance probability α(Xt−1, Y) where

α(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
.

(iii) Generate U ∼ Unif([0, 1]). If U ≤ α(Xt−1, Y), set Xt = Y ; otherwise, set Xt = Xt−1.

Example 3.1. When Q(x, ·) is a fixed probability distribution independent of x, Algo-
rithm 3.1 is known as the independence Metropolis–Hastings sampler. Its theoretical prop-
erties have been well studied in the literature [9, 15, 2], but it is rarely used in practice.

Example 3.2. Let X ⊂ Rd for some d ≥ 1. Pick some symmetric density function q̃(x)
(i.e., q̃(x) = q̃(−x) for every x), and define Q(x, dy) = q̃(y − x)µ(dy). In this case, α(x, y) is
simplified to 1∧(π(y)/π(x)), and Algorithm 3.1 is often known as the random walk Metropolis
(RWM) algorithm. For example, if X is continuous, we can letQ(x, ·) be a normal distribution
with mean 0 and variance ϕ for some fixed ϕ > 0. Such choices are very popular in practice,
since the resulting Metropolis–Hastings algorithm is very straightforward to implement.

Example 3.3. Let X = Rd for some d ≥ 1 and µ be the Lebesgue measure. Let Q(x, ·) be

N

(
x+

ϕ

2
∇ log π(x), ϕI

)
,

where ϕ > 0 is some fixed constant. The resulting algorithm is known as Metropolis-adjusted
Langevin algorithm (MALA). We point out two major differences between MALA and RWM.
First, the proposal distribution of MALA depends on π, while that of RWM usually does not.
Involving ∇ log π(x) in the proposal is often helpful, because this is the direction where log π
increases fastest. Second, the proposal of MALA is usually not symmetric, i.e., q(x, y) ̸=
q(y, x). So to calculate α(x, y), we need to evaluate both ∇ log π(x) and ∇ log π(y). MALA

Fall 2024 Quan Zhou

is very popular in practice, and its convergence properties and optimal choice of ϕ have also
been extensively studied [12, 4, 16, 14]. It is a special case of a more sophisticated and
also very popular algorithm known as Hamiltonian Monte Carlo [11]. When π has highly
correlated coordinates, MALA can be quite inefficient. One solution is to change the proposal
distribution Q(x, ·) to

N

(
x+

ϕ

2
Σ∇ log π(x), ϕΣ

)
,

where Σ is the covariance matrix (or an estimate of it) under π. A further generalization of
this proposal yields the Riemann manifold MALA [8].

Example 3.4. Our next example is the random-scan Gibbs sampler. Assume that X =
X1×· · ·×Xp is a product space, and let π(xi |x−i) denote the conditional distribution of the i-
th coordinate given the other p−1 coordinates. The proposal distribution Q(x, ·) encodes the
following procedure: first, we draw i from the uniform distribution on {1, 2, . . . , p}; second, we
modify xi by resampling it from the conditional distribution π(xi |x−i) (the other coordinates
remain unchanged). Denote the proposed state by y = (x1, . . . , xi−1, yi, xi+1, . . . , xp), and the
proposal density of such y can be calculated by q(x, y) = π(yi |x−i)/p.

1 Now let’s consider
the acceptance probability. Since π(x) = π(x−i)π(xi |x−i), we have

π(y)q(y, x)

π(x)q(x, y)
=

π(y)π(xi |x−i)/p

π(x)π(yi |x−i)/p
=

π(x−i)

π(x−i)
= 1.

Hence, the acceptance probability is always 1.

Example 3.5. We can of course combine the Gibbs update with other proposals. Let’s
assume X = R2 and π is continuous. Suppose that we can sample from π(x1 |x2) but not
π(x2 |x1). Then, we can use the following proposal distribution at x = (x1, x2):

(a) With probability 1/2, we propose x′ = (x′
1, x2) where x′

1 is drawn from π(x1 |x2).

(b) With probability 1/2, we propose x′ = (x1, x
′
2) where x′

2 is drawn from N(x2, σ
2).

So we can write down the proposal density as

q((x1, x2), (x
′
1, x

′
2)) =

{ 1
2
π(x′

1 |x2), if x2 = x′
2,

1

2
√
2πσ2

e−(x′
2−x2)/2σ2

, if x1 = x′
1.

(Since we assume π is continuous, we do not need to worry about the case x1 = x′
1, x2 = x′

2.)
It is easy to check that the first type of proposal is always accepted, while the second type
is accepted with probability 1 ∧ π(x′)/π(x). Such a scheme is sometimes referred to as
Metropolis-within-Gibbs sampling.

1Note that if Xi = R, the distribution Q(x, ·) is degenerate and cannot have a density with respect to
the Lebesgue measure on Rp. But we do not need to worry about this, and a rigorous justification for q(x, y)
will be given in Unit 5.

2

Fall 2024 Quan Zhou

3.2 Combining Metropolis–Hastings Schemes

The following simple lemma shows that we can easily devise new MCMC algorithms by
“combining” multiple Metropolis–Hastings algorithms.

Lemma 3.1. Let P1 and P2 be two transition kernels with stationary distribution π. For any
a ∈ (0, 1), both P1P2 and aP1 + (1− a)P2 are transition kernels that have π as a stationary
distribution, where the two kernels are defined by

(P1P2)(x,B) =

∫
X
P1(x, dy)P2(y,B),

(aP1 + (1− a)P2)(x,B) = aP1(x,B) + (1− a)P2(x,B),

for all x ∈ X , B ∈ B(X).

Proof. It is easy to check that both P1P2 and aP1 + (1− a)P2 are indeed transition kernels.
Since

(π(P1P2))(B) =

∫
X
(P1P2)(x,B)π(dx) =

∫
X 2

P1(x, dy)P2(y,B)π(dx)

=

∫
X
P2(y,B)π(dy) = π(B),

P1P2 is invarinat with respect to π. The proof for aP1 + (1− a)P2 is easy.

Remark 3.1. Note that even if P1, P2 are both reversible, P1P2 is usually not reversible.

We can interpret P1, P2 in Lemma 3.1 as two Metropolis–Hastings algorithms targeting π
equipped with different proposals, which we denote by Q1, Q2. By Lemma 3.1, we can also
simulate Markov chains P1P2 or aP1 + (1 − a)P2 to generate samples from π. This yields
the following two algorithms. The extension to three or more Metropolis–Hastings kernels is
straightforward.

Algorithm 3.2. For t = 1, 2, . . . ,

(i) Perform one Metropolis–Hastings step with proposal Q1 and generate X ′ ∼ P1(Xt−1, ·).

(ii) Perform one Metropolis–Hastings step with proposal Q2 and generate Xt ∼ P2(X
′, ·).

Algorithm 3.3. For t = 1, 2, . . . ,

(i) Generate W ∼ Unif([0, 1]). If W ≤ a, set k = 1; otherwise, set k = 2.

(ii) Sample Y from the distribution Qk(Xt−1, ·).

(iii) Calculate the acceptance probability αk(Xt−1, Y) where

αk(x, y) = min

{
1,

π(y)qk(y, x)

π(x)qk(x, y)

}
.

3

Fall 2024 Quan Zhou

(iv) Generate U ∼ Unif([0, 1]). If U ≤ αk(Xt−1, Y), set Xt = Y ; otherwise, set Xt = Xt−1.

There is another way to make use of multiple proposal schemes. We can simply define

Q = aQ1 + (1− a)Q2,

and implement the resulting Metropolis–Hastings algorithm. This will be more efficient
than Algorithm 3.3 according to Peskun ordering; see the exercise below. However, when
combining a large number of proposal schemes, calculating the acceptance probability (which
requires evaluating the proposal probabilities of all proposal schemes involved) can be time-
consuming.

Exercise 3.1. Let Q1, Q2, . . . , Qm be transition kernels with densities q1, q2, . . . , qm, and let
a1, a2, . . . , am be non-negative constants that sum up to 1. Define Q =

∑m
i=1 aiQi; denote its

density by q. For x ̸= y, define

p̄(x, y) = q(x, y)min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
,

p(x, y) =
m∑
i=1

aiqi(x, y)min

{
1,

π(y)qi(y, x)

π(x)qi(x, y)

}
.

Show that p̄(x, y) ≥ p(x, y).

3.3 Multiple-try Metropolis Algorithm

On continuous spaces, we have seen in Example 3.3 that one can use gradient information
to design efficient proposals. What if the gradient information is not available, e.g. when X
is discrete or ∇ log π(x) is extremely difficult to calculate? In such scenarios, we can use an
algorithm called multiple-try Metropolis (MTM) algorithm [10], whose dynamics is, to some
extent, similar to that of MALA.

Fix a proposal kernel Q, which is usually chosen to be a random walk. Introduce a
weighting function w(x, y) > 0, which represents our preference for proposing y at x. It
needs to satisfy

π(x)q(x, y)w(x, y) = π(y)q(y, x)w(y, x). (1)

This may remind you of the condition we imposed on the acceptance probability function
when constructing the Metropolis–Hastings algorithm, but note that w does not need to be
bounded, and we will only need to be able to evaluate w(x, y) up to a normalizing constant.
Some examples of w include

w(x, y) = π(y)q(y, x), w(x, y) =

√
π(y)q(y, x)

π(x)q(x, y)
, w(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
.

MTM proceeds as follows.

4

Fall 2024 Quan Zhou

Algorithm 3.4 (Multiple-try Metropolis). Fix a positive integer N ≥ 1. For t = 1, 2, . . . ,

(i) Sample Y1, . . . , YN independently from the distribution Q(Xt−1, ·).

(ii) Calculate w(Xt−1, Yi) for i = 1, . . . , N , and draw Y ∗ from {Y1, . . . , YN} with probability
proportional to w(Xt−1, Yi).

(iii) Sample Z1, . . . , ZN−1 independently from the distribution Q(Y ∗, ·), and calculate the
acceptance probability

α = min

{
1,

w(Xt−1, Y1) + · · ·+ w(Xt−1, YN)

w(Y ∗, Z1) + · · ·+ w(Y ∗, ZN−1) + w(Y ∗, Xt−1)

}
.

(iv) Generate U ∼ Unif([0, 1]). If U ≤ α, set Xt = Y ∗; otherwise, set Xt = Xt−1.

Note that in the above algorithm, the exact probability of proposing Y ∗ at Xt−1 is not
calculated, which would require a summation over all possible choices of (Y1, . . . , Yn). The
acceptance probability depends on not only Xt−1, Y

∗ but also Y1, . . . , YN , Z1, . . . , ZN−1. This
is similar to Algorithm 3.3, where the acceptance probability depends on which Qk is used,
and we do not need to calculate the marginal proposal probability with k integrated out.
Now let’s prove that the MTM algorithm is indeed invariant with respect to π.

Theorem 3.1. Let P denote the transition kernel of Algorithm 3.4. Then P is reversible
with respect to π.

Proof. We check the detailed balance condition π(dx)P (x, dy) = π(dy)P (y, dx) for any x ̸= y.
Observe that given Y1 = y1, . . . , YN = yN , Z1 = z1, . . . , ZN−1 = zN−1, the probability of
moving from Xt−1 = x to Xt = y is

w(x, y)
∑N

j=1 1(y = yj)∑N
i=1w(x, yi)

min

{
1,

∑N
i=1w(x, yi)

w(y, x) +
∑N−1

i=1 w(y, zi)

}

=
N∑
j=1

w(x, yj)1(y = yj)

max
{∑N

i=1 w(x, yi), w(yj, x) +
∑N−1

i=1 w(yj, zi)
} .

By integrating over Y1, . . . , YN , Z1, . . . , ZN−1, we get

P (x,B) =
N∑
j=1

∫ w(x, yj)1B(yj)
{∏N

i=1Q(x, dyi)
}{∏N−1

i=1 Q(yj, dzi)
}

max
{∑N

i=1 w(x, yi), w(yj, x) +
∑N−1

i=1 w(yj, zi)
} .

Since Y1, . . . , YN are i.i.d. (and thus exchangeable), the N terms involved in the above
summation are equal. Hence, by considering the case where yN is selected, we get

P (x,B) = N

∫ w(x, y)1B(y)Q(x, dy)
{∏N−1

i=1 Q(x, dyi)
}{∏N−1

i=1 Q(y, dzi)
}

max
{
w(x, y) +

∑N−1
i=1 w(x, yi), w(y, x) +

∑N−1
i=1 w(y, zi)

} .

5

Fall 2024 Quan Zhou

This shows that

π(dx)P (x, dy) = N

∫ π(dx)w(x, y)Q(x, dy)
{∏N−1

i=1 Q(x, dyi)
}{∏N−1

i=1 Q(y, dzi)
}

max
{
w(x, y) +

∑N−1
i=1 w(x, yi), w(y, x) +

∑N−1
i=1 w(y, zi)

} .

By (1), this is symmetric in (x, y), which concludes the proof.

Remark 3.2. MTM can be further generalized by considering exchangeable but dependent
candidates; see [5]. The optimal choice of w largely depends on the problem, but it is usually
preferable to construct w(x, y) as a function of π(y)q(y, x)/π(x)q(x, y) [3, 6].

3.4 Spike-and-slab Variable Selection

To illustrate the use of Metropolis–Hastings-type algorithms, let’s consider Bayesian spike-
and-slab variable selection. The data consists of an n× p design matrix, denoted by L, and
a response vector y. We assume that

y = Lβ + ϵ, ϵ ∼ N(0, τ−1I),

and most entires of β are zero. Let γ ∈ {0, 1}p be a function of β such that γi = 1 if and only
if βi ̸= 0. Our goal is to learn γ (and sometimes also β) from the data. Let |γ| =

∑p
i=1 γi,

and let Lγ denote the submatrix of L with columns indexed by γ. Let p(τ, γ, β) denote our
prior distribution on the parameters. We assume p(τ, γ, β) = p(β | τ, γ)p(γ)p(τ) (i.e., γ and
τ are independent a priori), and we consider the following standard choice of prior on (τ, β):

τ ∼ Gamma(κ1/2, κ2/2),

β | τ, γ ∼ N(0, τ−1Vγ), (2)

where Vγ is an |γ| × |γ| positive definite matrix that may depend on Lγ and other hyperpa-
rameters. (Note that here we use the shape-rate paratermization of the Gamma distribution.)
For example, we can use Vγ = σ2I or Vγ = g(L⊤

γ Lγ)
−1.

3.4.1 Sampling from p(γ | y)

A routine calculation yields the following formula for the marginal likelihood of γ:

p(y | γ) ∝ 1√
det(I + L⊤

γ LγVγ)

{
1−

y⊤Lγ(L
⊤
γ Lγ + V −1

γ)−1L⊤
γ y

y⊤y + κ2

}−(n+κ1)/2

.

So we can construct MCMC algorithms on {0, 1}p targeting the posterior distribution p(γ | y) ∝
p(γ)p(y | γ) (we assume that the prior p(γ) is easy to evaluate).

6

Fall 2024 Quan Zhou

Metropolis–Hastings sampler. For Metropolis–Hastings algorithms, all we need is to
specify the proposal distribution. Here is a popular choice for Q(γ, ·):

(a) With probability aadd, we sample j ∈ {i : γi = 0} change γj to 1.

(b) With probability adel, we sample k ∈ {i : γi = 1} change γk to 0.

(c) With probability 1 − aadd − adel, we sample j ∈ {i : γi = 1} and k ∈ {i : γi = 0} and
change γj to 0 and γk to 1 simultaneously.

The resulting Metropolis–Hastings algorithm is often known as the add-delete-swap sampler.
The meaning of “add-delete-swap” is obvious: when we propose changing some γj from 0 to
1 (resp. from 1 to 0), we are adding (resp. deleting) a predictor our regression model; when
we change γj from 0 to 1 and γk from 1 to 0, we are swapping one predictor with another.
Note that the coordinates j, k can be chosen randomly with equal probability or from some
pre-specified distribution. For example, we can first calculate the correlation between Li and
y for each column i and use this to devise the scheme of sampling j, k. A simpler construction
is to merge cases (i) and (ii): with probability a, we sample j from {1, 2, . . . , p} with equal
probability and set γj = 1 − γj. The convergence rate of this add-delete-swap sampler has
been studied in [17].

The main reason why swap moves are often used is that predictors can be highly correlated
(an extreme case is that two columns of L are identical). It is entirely possible that the
collinearity in L has more complex patterns, and we have to simultaneously modify more
than 2 coordinates of γ to move to another good model. In Exercise (3.2), we describe a
sampler similar to Algorithm 3.3 that allows us to combine multiple add/delete moves to
propose new values of γ.

Random-scan Gibbs sampler. Though we do not know the normalizing constant of
p(γ | y), we can exactly calculate the conditional posterior distribution of γi given γ−i, since

p(γi | y, γ−i) =
p(γi | y, γ−i)

p(γi = 1 | y, γ−i) + p(γi = 0 | y, γ−i)
,

and all terms on the right-hand side can be calculated up to a normalizing constant. However,
this is less efficient than the Metropolis–Hastings sampler with only add/delete proposals.
To see this, suppose that we have selected the coordinate j and the current value of γj is 0.
Let γ′ = (γ1, . . . , γj−1, 1, γj+1, . . . , γp) (that is, γ

′ is obtained from γ by adding predictor j).
The Gibbs update means that with probability p(γj = 1 | y, γ−j), we move from γ to γ′, and
with probability p(γj = 0 | y, γ−j), we stay at γ. So this is essentially an acceptance-rejection
step where we propose γ′ and accept it with probability

p(γj = 1 | y, γ−j)

p(γj = 0 | y, γ−j) + p(γj = 1 | y, γ−j)
=

p(γ′ | y)
p(γ | y) + p(γ′ | y)

.

As we have seen in Unit 2, according to Peskun ordering, this is less efficient than accepting
γ′ with probability min{1, p(γ′ | y)/p(γ | y)}.

7

Fall 2024 Quan Zhou

Remark 3.3. In practice the efficiency of an MCMC sampler for variable selection highly
depends on the implementation. Some numerical linear algebra tricks (e.g., Cholesky factor
updating) can significantly reduce the run time; see, e.g., [13, 7, 18]. Other than the spike-
and-slab prior, another popular approach to Bayesian variable selection is to use the so-called
horseshoe prior, and its numerical implementation has been studied in [1].

Exercise 3.2. Let Q be a proposal kernel such that Q(γ, nb(γ)) = 1, where

nb(γ) = {γ′ : |γ′ − γ| = 1}.

That is, Q defines how to add or delete one predictor from γ. Let N be a fixed positive
integer. Consider an MCMC algorithm which updates the current state γ0 as follows.

(i) Sample k from the uniform distribution on {1, 2, . . . , N}.

(ii) Draw γi ∼ Q(γi−1, ·) for i = 1, 2, . . . , k.

(iii) Let γk be our proposal, and we calculate the acceptance probability

α = min

{
1,

p(γk | y)
∏k

i=1 q(γi, γi−1)

p(γ0 | y)
∏k

i=1 q(γi−1, γi)

}
.

(iv) With probability α, we move to γk; with probability 1− α, we stay at γ0.

Show that this algorithm is reversible with respect to p(γ | y).

3.4.2 Sampling from p(β, τ | y)

Once we have an MCMC sampler targeting p(γ | y), we can generate samples of τ and β by
sampling from p(τ | y, γ) and p(β | y, γ, τ). But let’s consider an alternative approach that
directly targets p(β, τ | y) without explicitly sampling γ. To be able to evaluate p(β), we let
Vγ = σ2I in (2), and we use

p(γ) = ρ|γ|(1− ρ)p−|γ|

where ρ ∈ (0, 1) is another hyperparameter. In this case, we can integrate out γ and get

β | τ ∼ (1− ρ)δ0 + ρN(0, τ−1σ2).

So we can evaluate the posterior p(β, τ | y) ∝ p(β | τ)p(τ)p(y | β, τ) up to a normalizing con-
stant. Metropolis–Hastings algorithms can be constructed that target this posterior distri-
bution. Note that when proposing a new value for βj, we should use a mixture of δ0 and
some continuous distribution. Gibbs sampling can also be used. The conditional posterior
distribution p(τ | y, β) is still a Gamma distribution, and the conditional posterior distribu-
tion of βj given β−j and τ is a mixture of δ0 and normal distribution, which is also easy to
sample from (the expression of this conditional posterior distribution is left as an exercise).

Exercise 3.3. Find the expression for p(βj | y, β−j, τ). Note that this is the density with
respect to the dominating measure δ0 + λ, where λ denotes the Lebesgue measure.

8

Fall 2024 Quan Zhou

References

[1] Anirban Bhattacharya, Antik Chakraborty, and Bani K Mallick. Fast sampling with
gaussian scale mixture priors in high-dimensional regression. Biometrika, page asw042,
2016.

[2] Austin Brown and Galin L Jones. Exact convergence analysis for Metropolis–Hastings in-
dependence samplers in Wasserstein distances. Journal of Applied Probability, 61(1):33–
54, 2024.

[3] Hyunwoong Chang, Changwoo J Lee, Zhao Tang Luo, Huiyan Sang, and Quan Zhou.
Rapidly mixing multiple-try Metropolis algorithms for model selection problems. In
Advances in Neural Information Processing Systems, 2022.

[4] Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, and Philippe
Rigollet. Optimal dimension dependence of the Metropolis-adjusted Langevin algorithm.
In Conference on Learning Theory, pages 1260–1300. PMLR, 2021.

[5] Radu V Craiu and Christiane Lemieux. Acceleration of the multiple-try Metropolis
algorithm using antithetic and stratified sampling. Statistics and computing, 17:109–
120, 2007.

[6] Philippe Gagnon, Florian Maire, and Giacomo Zanella. Improving multiple-try Metropo-
lis with local balancing. arXiv preprint arXiv:2211.11613, 2022.

[7] Edward I George and Robert E McCulloch. Approaches for Bayesian variable selection.
Statistica Sinica, pages 339–373, 1997.

[8] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[9] Jun S Liu. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and computing, 6:113–119, 1996.

[10] Jun S Liu, Faming Liang, and Wing Hung Wong. The multiple-try method and local
optimization in Metropolis sampling. Journal of the American Statistical Association,
95(449):121–134, 2000.

[11] Radford M Neal. MCMC using Hamiltonian dynamics. arXiv preprint arXiv:1206.1901,
2012.

[12] Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations
to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 60(1):255–268, 1998.

9

Fall 2024 Quan Zhou

[13] Michael Smith and Robert Kohn. Nonparametric regression using Bayesian variable
selection. Journal of Econometrics, 75(2):317–343, 1996.

[14] Rong Tang and Yun Yang. On the computational complexity of Metropolis-adjusted
Langevin algorithms for Bayesian posterior sampling. Journal of Machine Learning
Research, 25(157):1–79, 2024.

[15] Guanyang Wang. Exact convergence analysis of the independent Metropolis-Hastings
algorithms. Bernoulli, 28(3):2012–2033, 2022.

[16] Keru Wu, Scott Schmidler, and Yuansi Chen. Minimax mixing time of the Metropolis-
adjusted Langevin algorithm for log-concave sampling. Journal of Machine Learning
Research, 23(270):1–63, 2022.

[17] Yun Yang, Martin J Wainwright, and Michael I Jordan. On the computational complex-
ity of high-dimensional Bayesian variable selection. The Annals of Statistics, 44(6):2497–
2532, 2016.

[18] Quan Zhou and Yongtao Guan. Fast model-fitting of Bayesian variable selection regres-
sion using the iterative complex factorization algorithm. Bayesian Analysis, 14(2):573,
2019.

10

	Examples of Metropolis–Hastings Algorithms
	Combining Metropolis–Hastings Schemes
	Multiple-try Metropolis Algorithm
	Spike-and-slab Variable Selection
	Sampling from p(|y)
	Sampling from p(, |y)

