Unit 2: Introduction to Metropolis–Hastings Algorithms

2.1 Markov Chains

Let X_0, X_1, \ldots be measurable mappings (i.e., random variables) from an underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to some measurable space $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$ where $\mathcal{B}(\mathcal{X})$ denotes the Borel σ -algebra. Let $\mathcal{F}_t = \sigma(X_0, X_1, \ldots, X_t)$ for each t. We say $(X_t)_{t\geq 0}$ is a (homogeneous) Markov chain with transition kernel $P: \mathcal{X} \times \mathcal{B}(\mathcal{X}) \to [0, 1]$, if for every t and $B \in \mathcal{B}(\mathcal{X})$,

$$\mathbb{P}(X_t \in B \mid \mathcal{F}_{t-1}) = \mathbb{P}(X_t \in B \mid X_{t-1}) = P(X_{t-1}, B), \text{ a.s.}$$

In other words, P(x, B) is the probability of moving to the set B in the next step given that the current state is x. Note that for every x, $P(x, \cdot)$ is a probability measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$. We will not consider non-homogeneous Markov chains in this course, whose transition kernels may change over time.

Notations that are often used in the literature include:

$$\nu(f) \coloneqq \int_{\mathcal{X}} f(x)\nu(\mathrm{d}x).$$

$$(\nu P)(B) \coloneqq \int_{\mathcal{X}} P(x,B)\nu(\mathrm{d}x).$$

$$(Pf)(x) \coloneqq \mathbb{E}[f(X_1) \mid X_0 = x] = \int_{\mathcal{X}} f(y)P(x,\mathrm{d}y).$$

$$P^t(x,B) \coloneqq \mathbb{P}(X_t \in B \mid X_0 = x) = \int_{\mathcal{X}} P(y,B)P^{t-1}(x,\mathrm{d}y).$$
(1)

In the above definitions, ν is any measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, f is any real-valued measurable function, and B is any set in $\mathcal{B}(\mathcal{X})$. When ν is a probability measure, we can interpret $(\nu P)(B)$ as the probability of $X_1 \in B$ when we draw the initial value X_0 from ν . The second equality in (1) is known as Chapman–Kolmogorov equation. Define the total variation distribution between two probability measures π and ν by

$$\|\nu - \pi\|_{\mathrm{TV}} = \sup_{A \in \mathcal{B}(\mathcal{X})} |\nu(A) - \pi(A)|.$$

2.2 Stationary Distributions of Markov Chains

Definition 2.1. We say a probability measure π is a stationary (or invariant) distribution of the transition kernel P if $(\pi P)(B) = \pi(B)$ for every $B \in \mathcal{B}(\mathcal{X})$.

If we initialize a Markov chain with transition kernel P by drawing X_0 from the stationary distribution π , then X_t has marginal distribution π for every t; in this case, we say $(X_t)_{t\geq 0}$ is a stationary process. More importantly, under some conditions on P, π is unique and the distribution of X_t will converge to π in total variation distance, as $t \to \infty$, regardless of the initial distribution (that is, $\|\nu P^t - \pi\|_{TV} \to 0$ for any probability distribution ν). So, if direct

sampling from π is difficult, we may consider simulating a Markov chain with stationary distribution π . For now, we choose not to worry about those technical conditions that ensure the convergence, since they are satisfied for almost every MCMC algorithm used in practice. A more important question is how to verify π is the stationary distribution of P, which is the first (and perhaps most important) step in the development of MCMC algorithms. One approach is to verify a stronger condition known as reversibility.

Definition 2.2. We say P is reversible with respect to a probability measure π , if

$$\int_{y\in B} \int_{x\in A} \pi(\mathrm{d}x) P(x,\mathrm{d}y) = \int_{y\in A} \int_{x\in B} \pi(\mathrm{d}x) P(x,\mathrm{d}y),\tag{2}$$

for any $A, B \in \mathcal{B}(\mathcal{X})$.

Lemma 2.1. If P is reversible with respect to π , then π is a stationary measure of P.

Proof. Letting $A = \mathcal{X}$ in (2), we get $(\pi P)(B) = \pi(B)$.

Let $X_0 \sim \pi$ and $X_1 \sim P(X_0, \cdot)$. Condition (2) can be equivalently expressed as

$$\mathbb{P}(X_0 \in A, X_1 \in B) = \mathbb{P}(X_0 \in B, X_1 \in A).$$

So the joint distribution of (X_0, X_1) is the same as that of (X_1, X_0) . In other words, reversing the Markov chain $(X_t)_{t\geq 1}$ does not change its distribution, which explains why we say P is reversible. We will see that the majority of MCMC algorithms are reversible.

Definition 2.3. Let π be the stationary distribution of P. Suppose π has a density with respect to a dominating measure μ ; denote it by $\pi(x) = (d\pi/d\mu)(x)$. Suppose P also has a density p with respect to μ ; that is, $P(x, B) = \int_B p(x, y)\mu(dy)$ for any $x \in \mathcal{X}, B \in \mathcal{B}(\mathcal{X})$. We say P satisfies a detailed balance condition, if for any $x, y \in \mathcal{X}$,

$$\pi(x)p(x,y) = \pi(y)p(y,x).$$
(3)

Lemma 2.2. If (3) holds, then P is reversible with respect to π .

Proof. This directly follows from the definition.

Exercise 2.1. Let t be a positive integer. Clearly, P^t is also a transition kernel. Prove:

(a) If π is a stationary distribution of P, then it is also a stationary distribution of P^t .

(b) If π is a stationary distribution of P^t , then P also has a stationary distribution.

2.3 Construction of Metropolis–Hastings Algorithms

Let the state space \mathcal{X} and target distribution π be given. We now consider how to construct a Markov chain that is easy to simulate and has stationary distribution π . To begin with, let us fix a "reference" transition kernel Q. We can interpret Q as a Markov chain moving "randomly" on the space \mathcal{X} , and in most cases, Q is chosen such that each step of this chain is small (with high probability). For example, if $\mathcal{X} = \mathbb{R}$, we can let $Q(x, \cdot)$ be a normal distribution with mean x and variance σ^2 . If \mathcal{X} is the node set of an undirected graph, we can let $Q(x, \cdot)$ be the uniform distribution on the set of nodes connected to x. The choice of Q is almost arbitrary; in particular, $Q(x, \cdot)$ can depend on π . But to be able to implement the sampling algorithm we will develop, for each x, $Q(x, \cdot)$ needs to be a distribution that we know how to sample from (that is, we know how to simulate a Markov chain with kernel Q).

Of course, Q probably does not have π as the stationary distribution. So let's modify the dynamics of this chain using the idea of rejection sampling. If the current state is $X_t = x$, we draw $Y \sim Q(x, \cdot)$ but do not necessarily "accept" this proposal. Instead, we calculate an acceptance probability, denoted by $\alpha(x, y)$, where y is the realized value of Y. We set $X_{t+1} = y$ only with probability $\alpha(x, y)$, and we set $X_{t+1} = x$ with probability $1 - \alpha(x, y)$ (i.e., stay at the previous state). Denote the resulting transition kernel by P. For any set B such that $x \notin B$, we have

$$P(x,B) = \int_{y \in B} \int_{u \in [0,1]} \mathbb{1}_{[0,\alpha(x,y)]}(u) \mathrm{d}u \, Q(x,\mathrm{d}y) = \int_{B} \alpha(x,y) Q(x,\mathrm{d}y).$$

Hence, for any $x \neq y$, we can write $P(x, dy) = \alpha(x, y)Q(x, dy)$. If B may contain the state x, we can write

$$P(x,B) = \int_{B} \alpha(x,y)Q(x,\mathrm{d}y) + \mathbb{1}_{B}(x)\int_{\mathcal{X}} (1-\alpha(x,y))Q(x,\mathrm{d}y)$$

From now on, we assume that $Q(x, dy) = q(x, y)\mu(dy)$ and $\pi(dx) = \pi(x)\mu(dx)$. Then $P(x, \cdot)$ has a density with respect to $\mu + \delta_x$ (where δ_x denotes the Dirac measure assigning probability one to x), and we can write

$$P(x, \mathrm{d}y) = \alpha(x, y)q(x, y)\mu(\mathrm{d}y) + \left\{ \int_{\mathcal{X}} (1 - \alpha(x, z))q(x, z)\mu(\mathrm{d}z) \right\} \delta_x(\mathrm{d}y).$$
(4)

For $x \neq y$, we have transition density $p(x, y) = \alpha(x, y)q(x, y)$. By Lemmas 2.1 and 2.2, if α is chosen such that

$$\pi(x)\alpha(x,y)q(x,y) = \pi(y)\alpha(y,x)q(y,x), \quad \forall x, y \in \mathcal{X},$$
(5)

then P has π as a stationary distribution. Recall that we interpret α as the acceptance probability, so we have one more constraint that α has to be always in [0, 1]. Still, there are infinitely many choices of α . Two simple choices that have been often considered in the literature are

$$\alpha^*(x,y) = \min\left\{1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\right\}, \quad \alpha_{\rm B}(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y) + \pi(y)q(y,x)}.$$
(6)

The subscript B in the second choice stands for Barker, since the resulting Metropolis– Hastings algorithm is also known as Barker's dynamics [1].

We summarize this derivation in the following theorem. We say P in Theorem 2.1 is the transition kernel of a Metropolis–Hastings algorithm with proposal Q.

Theorem 2.1. Let Q be a transition kernel on \mathcal{X} with density q (with respect to the dominating measure μ). Let P be a transition kernel defined by (4), where α is some function taking values in [0,1] and satisfies (5); in particular, α can be one of the two choices given in (6). Then P is reversible with respect to π and thus has π has a stationary density.

Example 2.1. We now illustrate the use of Metropolis–Hastings algorithms using a toy example. Let $\mathcal{X} = \{1, 2, ..., p\}$ with p = 10, and define $\pi(x) \propto 1/x$ for each x. Since \mathcal{X} is discrete, we will always take counting measure as the dominating measure whenever talking about densities. Let the density of the proposal kernel Q be given by

$$q(x, p \land (x+1)) = q(x, 1 \lor (x-1)) = \frac{1}{2}.$$

(All other moves have proposal probability zero.) To run the Metropolis–Hastings algorithm, we simulate a Markov chain $(X_t)_{t\geq 0}$ with kernel P as described in Theorem 2.1 and $\alpha(x, y) = 1 \wedge (\pi(y)/\pi(x))$. Note that the proposal probabilities are always canceled out.

First, let's verify that the distribution of X_t converges to π in total variation distance, i.e., $\lim_{t\to\infty} \|\delta_{x_0}P^t - \pi\|_{\mathrm{TV}} = 0$, where x_0 denotes the initial value. We choose $x_0 = p$ and run the algorithm 10^4 times. Then we numerically calculate $\|\hat{P}^t(x_0, \cdot) - \pi\|_{\mathrm{TV}}$, where $\hat{P}^t(x_0, \cdot)$ is the empirical distribution of X_t out of the 10^4 replicates. The result is shown in the left panel of Figure 1 (note that the y-axis is shown on log scale). The blue line in the plot is obtained from linear regression, with t as the predictor and $\log \|\hat{P}^t(x_0, \cdot) - \pi\|_{\mathrm{TV}}$ as the response. It is clear that the total variation distance goes to zero at an exponential rate. Second, we check that the empirical distribution of (X_1, X_2, \ldots, X_t) also converges to π as $t \to \infty$ (think about why). Again, we let $x_0 = p$ and run the algorithm only once for 10^3 iterations. The decay of the total variation distance between π and the distribution of (X_1, X_2, \ldots, X_t) is shown in the right panel of Figure 1.

2.4 Asymptotic Variances and Peskun Theorem

Let $(X_t)_{t\geq 0}$ be a Markov chain with stationary distribution π . To estimate $\pi(f)$, we can use

$$\hat{\pi}_n(f) = \frac{1}{n} \sum_{i=1}^n f(X_i).$$
(7)

Intuitively, the variance of this estimator reflects how fast the chain converges to π . The next definition formalizes this idea.

Figure 1: Convergence to π in Example 2.1.

Definition 2.4. Let P be a transition kernel reversible with respect to π , and let $f: \mathcal{X} \to \mathbb{R}$ be such that $\pi(f) = 0$ and $\pi(f^2) < \infty$. Define

$$\sigma_f^2(P) = \lim_{n \to \infty} \frac{1}{n} \operatorname{Var}\left(\sum_{i=1}^n f(X_i)\right),$$

where $(X_t)_{t\geq 0}$ is a Markov chain with kernel P and $X_0 \sim \pi$. We say $\sigma_f^2(P)$ is the asymptotic variance of $\hat{\pi}_n(f)$ defined in (7).

Remark 2.1. Under mild conditions on P and f, we have the CLT: $\sqrt{n}\hat{\pi}_n(f)$ converges in distribution to a normal random variable with mean 0 and variance $\sigma_f^2(P)$; see, e.g. [4, 2] for technical details.

Definition 2.5. Let P_1, P_2 be two transition kernels reversible with respect to π . We write $P_1 \succeq P_2$ if $\sigma_f^2(P_1) \le \sigma_f^2(P_2)$ for any f such that $\pi(f) = 0$ and $\pi(f^2) < \infty$.

We now state a very important result due to Peskun and Tierney [5, 6]; it is often known as Peskun ordering of Markov chains.

Theorem 2.2. Let P_1, P_2 be transition kernels reversible with respect to π . Then, $P_1 \succeq P_2$ if

$$P_1(x, B \setminus \{x\}) \ge P_2(x, B \setminus \{x\}), \quad \forall x \in \mathcal{X}, B \in \mathcal{B}(\mathcal{X}).$$

In Section 2.3, we have seen that the acceptance probability $\alpha(x, y)$ in Metropolis– Hastings schemes can take many forms, and now Theorem 2.2 tells us which one to use.

Exercise 2.2. Fix the stationary distribution π and proposal kernel Q. Let P_{α} denote the Metropolis–Hastings kernel defined by (4). Prove that $P_{\alpha^*} \succeq P_{\alpha'}$ where α^* is as given in (6), and $\alpha'(x, y)$ is any function that takes values in [0, 1] and satisfies (5).

Example 2.2. Let's compare the two choices of α given in (6) for Example 2.1. Let $\theta = \sum_{i=1}^{p} x \pi(x)$ (for $p = 10, \theta = 3.414$), and we can estimate it using $\hat{\theta}_t = t^{-1} \sum_{i=1}^{t} X_i$. Denote by $\hat{\theta}_t^*$ and $\hat{\theta}_t^{\text{B}}$ the estimators obtained from the Metropolis–Hastings algorithm with acceptance probability α^* and that with acceptance probability α_{B} , respectively. This time we initialize $X_0 \sim \pi$ and still run the algorithm 10⁴ times. Then we numerically calculate the standard deviation of $\hat{\theta}_t$ across 10⁴ replicates, and we plot it against t in Figure 2.

Figure 2: Standard deviation of the estimator $\hat{\theta}_t$ in Example 2.2.

References

- [1] Anthony Alfred Barker. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma. *Australian Journal of Physics*, 18(2):119–134, 1965.
- [2] Olle Häggström and Jeffrey Rosenthal. On variance conditions for Markov chain CLTs. *Electronic Communications in Probability*, 12:454–464, 2007.
- [3] W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109, 04 1970.
- [4] Galin L Jones. On the Markov chain central limit theorem. Probability Surveys, 1:299, 2004.
- [5] Peter H Peskun. Optimum Monte-Carlo sampling using Markov chains. *Biometrika*, 60(3):607–612, 1973.
- [6] Luke Tierney. A note on Metropolis-Hastings kernels for general state spaces. Annals of applied probability, pages 1–9, 1998.