
Unit 2: Introduction to Metropolis–Hastings Algorithms

2.1 Markov Chains

Let X0, X1, . . . be measurable mappings (i.e., random variables) from an underlying prob-
ability space (Ω,F ,P) to some measurable space (X ,B(X )) where B(X ) denotes the Borel
σ-algebra. Let Ft = σ(X0, X1, . . . , Xt) for each t. We say (Xt)t≥0 is a (homogeneous) Markov
chain with transition kernel P : X × B(X )→ [0, 1], if for every t and B ∈ B(X ),

P(Xt ∈ B | Ft−1) = P(Xt ∈ B |Xt−1) = P (Xt−1, B), a.s.

In other words, P (x,B) is the probability of moving to the set B in the next step given that
the current state is x. Note that for every x, P (x, ·) is a probability measure on (X ,B(X )).
We will not consider non-homogeneous Markov chains in this course, whose transition kernels
may change over time.

Notations that are often used in the literature include:

ν(f) :=

∫
X
f(x)ν(dx).

(νP )(B) :=

∫
X
P (x,B)ν(dx).

(Pf)(x) := E[f(X1) |X0 = x] =

∫
X
f(y)P (x, dy).

P t(x,B) := P(Xt ∈ B |X0 = x) =

∫
X
P (y,B)P t−1(x, dy). (1)

In the above definitions, ν is any measure on (X ,B(X )), f is any real-valued measurable
function, and B is any set in B(X ). When ν is a probability measure, we can interpret
(νP )(B) as the probability of X1 ∈ B when we draw the initial value X0 from ν. The
second equality in (1) is known as Chapman–Kolmogorov equation. Define the total variation
distribution between two probability measures π and ν by

‖ν − π‖TV = sup
A∈B(X )

|ν(A)− π(A)|.

2.2 Stationary Distributions of Markov Chains

Definition 2.1. We say a probability measure π is a stationary (or invariant) distribution
of the transition kernel P if (πP )(B) = π(B) for every B ∈ B(X ).

If we initialize a Markov chain with transition kernel P by drawing X0 from the stationary
distribution π, then Xt has marginal distribution π for every t; in this case, we say (Xt)t≥0
is a stationary process. More importantly, under some conditions on P , π is unique and the
distribution of Xt will converge to π in total variation distance, as t→∞, regardless of the
initial distribution (that is, ‖νP t−π‖TV → 0 for any probability distribution ν). So, if direct
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sampling from π is difficult, we may consider simulating a Markov chain with stationary
distribution π. For now, we choose not to worry about those technical conditions that ensure
the convergence, since they are satisfied for almost every MCMC algorithm used in practice.
A more important question is how to verify π is the stationary distribution of P , which is
the first (and perhaps most important) step in the development of MCMC algorithms. One
approach is to verify a stronger condition known as reversibility.

Definition 2.2. We say P is reversible with respect to a probability measure π, if∫
y∈B

∫
x∈A

π(dx)P (x, dy) =

∫
y∈A

∫
x∈B

π(dx)P (x, dy), (2)

for any A,B ∈ B(X ).

Lemma 2.1. If P is reversible with respect to π, then π is a stationary measure of P .

Proof. Letting A = X in (2), we get (πP )(B) = π(B).

Let X0 ∼ π and X1 ∼ P (X0, ·). Condition (2) can be equivalently expressed as

P(X0 ∈ A,X1 ∈ B) = P(X0 ∈ B,X1 ∈ A).

So the joint distribution of (X0, X1) is the same as that of (X1, X0). In other words, reversing
the Markov chain (Xt)t≥1 does not change its distribution, which explains why we say P is
reversible. We will see that the majority of MCMC algorithms are reversible.

Definition 2.3. Let π be the stationary distribution of P . Suppose π has a density with
respect to a dominating measure µ; denote it by π(x) = (dπ/dµ)(x). Suppose P also has a
density p with respect to µ; that is, P (x,B) =

∫
B
p(x, y)µ(dy) for any x ∈ X , B ∈ B(X ). We

say P satisfies a detailed balance condition, if for any x, y ∈ X ,

π(x)p(x, y) = π(y)p(y, x). (3)

Lemma 2.2. If (3) holds, then P is reversible with respect to π.

Proof. This directly follows from the definition.

Exercise 2.1. Let t be a positive integer. Clearly, P t is also a transition kernel. Prove:

(a) If π is a stationary distribution of P , then it is also a stationary distribution of P t.

(b) If π is a stationary distribution of P t, then P also has a stationary distribution.
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2.3 Construction of Metropolis–Hastings Algorithms

Let the state space X and target distribution π be given. We now consider how to construct
a Markov chain that is easy to simulate and has stationary distribution π. To begin with,
let us fix a“reference” transition kernel Q. We can interpret Q as a Markov chain moving
“randomly” on the space X , and in most cases, Q is chosen such that each step of this chain
is small (with high probability). For example, if X = R, we can let Q(x, ·) be a normal
distribution with mean x and variance σ2. If X is the node set of an undirected graph, we
can let Q(x, ·) be the uniform distribution on the set of nodes connected to x. The choice of
Q is almost arbitrary; in particular, Q(x, ·) can depend on π. But to be able to implement
the sampling algorithm we will develop, for each x, Q(x, ·) needs to be a distribution that we
know how to sample from (that is, we know how to simulate a Markov chain with kernel Q).

Of course, Q probably does not have π as the stationary distribution. So let’s modify the
dynamics of this chain using the idea of rejection sampling. If the current state is Xt = x,
we draw Y ∼ Q(x, ·) but do not necessarily “accept” this proposal. Instead, we calculate
an acceptance probability, denoted by α(x, y), where y is the realized value of Y . We set
Xt+1 = y only with probability α(x, y), and we set Xt+1 = x with probability 1 − α(x, y)
(i.e., stay at the previous state). Denote the resulting transition kernel by P . For any set B
such that x /∈ B, we have

P (x,B) =

∫
y∈B

∫
u∈[0,1]

1[0,α(x,y)](u)duQ(x, dy) =

∫
B

α(x, y)Q(x, dy).

Hence, for any x 6= y, we can write P (x, dy) = α(x, y)Q(x, dy). If B may contain the state
x, we can write

P (x,B) =

∫
B

α(x, y)Q(x, dy) + 1B(x)

∫
X

(1− α(x, y))Q(x, dy).

From now on, we assume that Q(x, dy) = q(x, y)µ(dy) and π(dx) = π(x)µ(dx). Then
P (x, ·) has a density with respect to µ + δx (where δx denotes the Dirac measure assigning
probability one to x), and we can write

P (x, dy) = α(x, y)q(x, y)µ(dy) +

{∫
X

(1− α(x, z))q(x, z)µ(dz)

}
δx(dy). (4)

For x 6= y, we have transition density p(x, y) = α(x, y)q(x, y). By Lemmas 2.1 and 2.2, if α
is chosen such that

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x), ∀x, y ∈ X , (5)

then P has π as a stationary distribution. Recall that we interpret α as the acceptance
probability, so we have one more constraint that α has to be always in [0, 1]. Still, there
are infinitely many choices of α. Two simple choices that have been often considered in the
literature are

α∗(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
, αB(x, y) =

π(y)q(y, x)

π(x)q(x, y) + π(y)q(y, x)
. (6)
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The subscript B in the second choice stands for Barker, since the resulting Metropolis–
Hastings algorithm is also known as Barker’s dynamics [1].

We summarize this derivation in the following theorem. We say P in Theorem 2.1 is the
transition kernel of a Metropolis–Hastings algorithm with proposal Q.

Theorem 2.1. Let Q be a transition kernel on X with density q (with respect to the dom-
inating measure µ). Let P be a transition kernel defined by (4), where α is some function
taking values in [0, 1] and satisfies (5); in particular, α can be one of the two choices given
in (6). Then P is reversible with respect to π and thus has π has a stationary density.

Example 2.1. We now illustrate the use of Metropolis–Hastings algorithms using a toy
example. Let X = {1, 2, . . . , p} with p = 10, and define π(x) ∝ 1/x for each x. Since X is
discrete, we will always take counting measure as the dominating measure whenever talking
about densities. Let the density of the proposal kernel Q be given by

q(x, p ∧ (x+ 1)) = q(x, 1 ∨ (x− 1)) =
1

2
.

(All other moves have proposal probability zero.) To run the Metropolis–Hastings algorithm,
we simulate a Markov chain (Xt)t≥0 with kernel P as described in Theorem 2.1 and α(x, y) =
1 ∧ (π(y)/π(x)). Note that the proposal probabilities are always canceled out.

First, let’s verify that the distribution of Xt converges to π in total variation distance,
i.e., limt→∞‖δx0P t−π‖TV = 0, where x0 denotes the initial value. We choose x0 = p and run
the algorithm 104 times. Then we numerically calculate ‖P̂ t(x0, ·)− π‖TV, where P̂ t(x0, ·) is
the empirical distribution of Xt out of the 104 replicates. The result is shown in the left panel
of Figure 1 (note that the y-axis is shown on log scale). The blue line in the plot is obtained
from linear regression, with t as the predictor and log‖P̂ t(x0, ·)− π‖TV as the response. It is
clear that the total variation distance goes to zero at an exponential rate. Second, we check
that the empirical distribution of (X1, X2, . . . , Xt) also converges to π as t→∞ (think about
why). Again, we let x0 = p and run the algorithm only once for 103 iterations. The decay of
the total variation distance between π and the distribution of (X1, X2, . . . , Xt) is shown in
the right panel of Figure 1.

2.4 Asymptotic Variances and Peskun Theorem

Let (Xt)t≥0 be a Markov chain with stationary distribution π. To estimate π(f), we can use

π̂n(f) =
1

n

n∑
i=1

f(Xi). (7)

Intuitively, the variance of this estimator reflects how fast the chain converges to π. The next
definition formalizes this idea.
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Figure 1: Convergence to π in Example 2.1.

Definition 2.4. Let P be a transition kernel reversible with respect to π, and let f : X → R
be such that π(f) = 0 and π(f 2) <∞. Define

σ2
f (P ) = lim

n→∞

1

n
Var

(
n∑
i=1

f(Xi)

)
,

where (Xt)t≥0 is a Markov chain with kernel P and X0 ∼ π. We say σ2
f (P ) is the asymptotic

variance of π̂n(f) defined in (7).

Remark 2.1. Under mild conditions on P and f , we have the CLT:
√
nπ̂n(f) converges in

distribution to a normal random variable with mean 0 and variance σ2
f (P ); see, e.g. [4, 2] for

technical details.

Definition 2.5. Let P1, P2 be two transition kernels reversible with respect to π. We write
P1 � P2 if σ2

f (P1) ≤ σ2
f (P2) for any f such that π(f) = 0 and π(f 2) <∞.

We now state a very important result due to Peskun and Tierney [5, 6]; it is often known
as Peskun ordering of Markov chains.

Theorem 2.2. Let P1, P2 be transition kernels reversible with respect to π. Then, P1 � P2 if

P1(x,B \ {x}) ≥ P2(x,B \ {x}), ∀x ∈ X , B ∈ B(X ).

In Section 2.3, we have seen that the acceptance probability α(x, y) in Metropolis–
Hastings schemes can take many forms, and now Theorem 2.2 tells us which one to use.

Exercise 2.2. Fix the stationary distribution π and proposal kernel Q. Let Pα denote the
Metropolis–Hastings kernel defined by (4). Prove that Pα∗ � Pα′ where α∗ is as given in (6),
and α′(x, y) is any function that takes values in [0, 1] and satisfies (5).
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Example 2.2. Let’s compare the two choices of α given in (6) for Example 2.1. Let θ =∑p
i=1 x π(x) (for p = 10, θ = 3.414), and we can estimate it using θ̂t = t−1

∑t
i=1Xi. Denote by

θ̂∗t and θ̂Bt the estimators obtained from the Metropolis–Hastings algorithm with acceptance
probability α∗ and that with acceptance probability αB, respectively. This time we initialize
X0 ∼ π and still run the algorithm 104 times. Then we numerically calculate the standard
deviation of θ̂t across 104 replicates, and we plot it against t in Figure 2.

Figure 2: Standard deviation of the estimator θ̂t in Example 2.2.

References

[1] Anthony Alfred Barker. Monte Carlo calculations of the radial distribution functions for
a proton-electron plasma. Australian Journal of Physics, 18(2):119–134, 1965.
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