
Unit 1: Introduction, Rejection and Importance Sampling

Sampling methods can be used for a wide range of tasks in statistics, machine learning
and data science. Typical applications include:

◦ Given a real-valued function f ≥ 0, generate x1, . . . , xn from the probability distribution
with density function Ce−f(x), where C is the unknown normalizing constant.

◦ Find arg minx f(x).

◦ Approximate an (often high-dimensional) integral
∫
H(x)ν(dx) for some real-valued

function H and measure ν.

◦ Given samples y1, . . . , yn from some unknown probability distribution π, generate a
new sample x from π.

The first task will be the primary focus of this course, but we aim to cover sampling methods
used for all the four tasks. We will prioritize methodology and computation over theory.

1.1 Monte Carlo Integration

Consider the integral θ :=
∫
X H(x)π(dx) where π is a probability distribution defined on the

space X , and H : X → R. We will always assume that θ is well-defined and finite. Given
i.i.d. random variables X1, . . . , Xn drawn from π, we can approximate this integral by

θ̂n =
H(X1) + · · ·+H(Xn)

n
.

Assume
∫
X H

2(x)π(dx) < ∞. Then, H(X1), . . . , H(Xn) are i.i.d. random variables with

mean θ and finite variance. Hence, by the Law of Large Numbers, θ̂n converges to θ almost
surely. By the Central Limit Theorem,

√
n(θ̂n − θ) converges in distribution to a normal

random variable, so the error of the estimator θ̂n has order O(n−1/2). Such a sampling scheme
for integral approximation can be generalized by considering correlated random variables
X1, X2, . . . (e.g. in Markov chain Monte Carlo), and under some additional conditions CLT
continues to hold.

Example 1.1. Consider this integral

θ =

∫
R

x√
2π
e−x

2/2dx,

which is just the mean of a standard normal random variable and equals 0. Now let’s generate
a sequence of standard normal random variables as follows. Draw X1 ∼ N(0, 1), and for each
i ≥ 2, we let Xi = λXi−1 +Zi, where λ ∈ (−1, 1) is a constant, and Z1, Z2, . . . are i.i.d. (and
independent of X1, X2, . . . ) with distribution N(0, 1− λ2). Clearly, every Xi follows N(0, 1).
Define our estimator by θ̂n = (X1 + · · ·Xn)/n. Then, θ̂n is also normally distributed. For
every fixed n, the variance of θ̂n decreases as λ decreases. In particular, when λ < 0, the
estimator is more efficient than the average of i.i.d. samples from N(0, 1). For every fixed λ,
as n goes to infinity, one can show that the variance of θ̂n is approximately 1+λ

n(1−λ) .
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Example 1.2. Let V (p) denote the volume of the simplex

Sp = {x = (x1, . . . , xp) ∈ Rp : x1 + · · ·+ xp ≤ 1, xi ≥ 0 for each i}. (1)

One can show that V (p) = 1/p!. Here is a very simple, though quite inefficient, method for
numerically calculating V (p). Observe that we can express V (p) by

V (p) =

∫
[0,1]p

1Sp(x)dx = E[1Sp(X)]

where X ∈ Rp follows a uniform distribution on [0, 1]p. Hence, by generating n random
samples from Unif([0, 1]p), we can unbiasedly estimate V (p); denote this estimator by V̂n,
omitting the dependence on p. The standard deviation of V̂n is {V (1− V )/n}1/2.

1.2 Rejection Sampling

Consider Example 1.2 again. How to generate a random sample from the uniform distribution
on Sp? The same idea applies. We draw X from Unif([0, 1]p) and discard it if X /∈ Sp.
This method is known as rejection sampling (other names include “accept-reject method”,
“acceptance-rejection sampling”); a general formulation is given in Theorem 1.1. When p
is large, using rejection sampling to generate observations from Unif(Sp) can be a very bad
idea, and in Exercise 1.1, we recall a simple method for direct sampling from Unif(Sp) [1].

Theorem 1.1 (Rejection Sampling). Let f, g be two probability density functions with respect
to a dominating measure µ on the space X . Let M be a finite constant such that

M ≥ sup
x∈X

f(x)

g(x)
.

Let Y1, Y2, . . . be i.i.d. with distribution g (for simplicity, we often refer to a density function
as a distribution), and let U1, U2, . . . be i.i.d. from Unif([0, 1]). Define

X = Yτ , where τ = min

{
i ≥ 1: Ui ≤

f(Yi)

Mg(Yi)

}
.

Then X follows the distribution f .

Proof. Fix an arbitrary measurableB ⊂ R. It suffices to show that P(X ∈ B) =
∫
B
f(x)µ(dx).

Without loss of generality, consider the event A = {τ = 1}. Then,

P(X ∈ B |A) =
P({Y1 ∈ B} ∩ A)

P(A)
.

For the numerator, we have

P({Y1 ∈ B} ∩ A) =

∫
y∈B

∫
u∈[0,1]

1

(
u ≤ f(y)

Mg(y)

)
du g(y)µ(dy)

=

∫
y∈B

f(y)

Mg(y)
g(y)µ(dy) =

1

M

∫
B

f(y)µ(dy).

Letting B = R, we get P(A) = 1/M . The claim then follows.
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Remark 1.1. The proof of Theorem 1.1 also reveals that the probability of acceptance is
M−1. This further implies that τ is a geometric random variable with success probability
M−1, and thus E[τ ] = M . When M is large, this method is not very efficient. Another
limitation of rejection sampling is that M may not exist even if f, g have the same support.

Exercise 1.1. Let U1, . . . , Up be i.i.d. random variables drawn from the uniform distribution
on [0, 1]. Denote the order statistics by U(1) ≤ U(2) ≤ · · · ≤ Up, and define U(0) = 0. Show that
(X1, . . . , Xp) follows the uniform distribution on Sn defined in (1), where Xi = U(i) − U(i−1).

1.3 Importance Sampling

In rejection sampling, we generate samples using a reference distribution g. The same idea
can be used to estimate the integral θ =

∫
X H(x)f(x)µ(dx). This technique is known as

importance sampling, which essentially means a change of measure.

Theorem 1.2 (Importance Sampling). Let f, g be two probability density functions, with
respect to measure µ, and assume that f > 0, g > 0 everywhere. Given i.i.d. random
variables X1, X2, . . . with distribution g, we define

θ̂g,n =
1

n

n∑
i=1

H(Xi)w(Xi), where w(x) =
f(x)

g(x)
. (2)

Then, θ̂g,n
a.s.→ θ =

∫
X H(x)f(x)µ(dx), provided that θ is well-defined and finite.

Proof. Observe that we can write

θ =

∫
X
I(x)g(x)µ(dx), where I(x) = H(x)w(x).

Hence, I(X1), I(X2), . . . are i.i.d. with finite expectation with respect to g. By the Strong
Law of Large Numbers, their sample mean converges almost surely.

Remark 1.2. We can replace f, g > 0 with weaker conditions. For example, the condition
{x : g(x) = 0} ⊂ {x : f(x) = 0} suffices, and the only change we need is to define w = 0 on the
set {x : g(x) = 0}. This of course has no impact on implementation, since with probability
one, we will not generate X = x with g(x) = 0.

The variance of the estimator θ̂g,n can be calculated by

Var(θ̂g,n) =
1

n
Var(I(X)) =

1

n

{∫
X

H2(x)f 2(x)

g(x)
µ(dx)− θ2

}
, (3)

where X ∼ g. It can be arbitrarily larger or smaller than the variance of the sample mean
of n i.i.d. observations of H(X̃) with X̃ ∼ f ; see Exercise 1.2.

In many applications, we can only evaluate f or g (or both) up to a normalizing constant,
in which case the estimator defined in (2) cannot be used. This difficulty can be bypassed
by using self-normalization.
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Theorem 1.3 (Self-normalized Importance Sampling). Consider the setting of Theorem 1.2.
Define

θ̃g,n =

∑n
i=1H(Xi)w(Xi)∑n

i=1w(Xi)
.

Then, θ̃g,n
a.s.→ θ =

∫
X H(x)f(x)µ(dx), provided that θ is well-defined and finite.

Proof. Observe that we can write

θ̃g,n =
θ̂g,n

n−1
∑n

i=1w(Xi)
.

Hence, by the continuous mapping theorem, it only remains to show that the denominator
converges almost surely to 1. But this again follows from SLLN.

Example 1.3. This example is from [2]. Consider

θ =

∫
R
xf(x)dx, f(x) =

1√
2πσ2

e−(x−θ)
2/2σ2

.

So θ is just the mean of X ∼ N(θ, σ2). Let the reference distribution be ga(x) ∝ f(x)a,
parameterized by a (known as inverse temperature), and consider minimizing the variance
given in (3) over a > 0. That is, we want to find

arg min
a>0

∫
X

x2f 2(x)

ga(x)
dx =: arg min

a>0
J(a).

A straightforward calculation gives that for a ∈ (0, 2),

J(a) =
θ2 + (2− a)−1σ2√

a(2− a)
.

Define γ = θ/σ. The optimal value of a is given by a∗ = 1/2 if γ = 0, and

a∗ =
3

2
+

1

γ2
− 1

2

√
4

γ4
+

8

γ2
+ 1.

Note that a∗ is always in [1/2, 1), and it was shown in [2] that there always exists a− (depend-
ing on γ) such that a reference distribution ga with a ∈ (a−, 1) is more efficient than direct
sampling from f . Intuitively, using some a slightly smaller than 1 should be advantageous,
because (i) ga still has a similar landscape to f so that samples are likely to be drawn around
θ, and (ii) samples near θ have larger importance weights (since a < 1), which makes the
importance sampling estimator more efficient.

Exercise 1.2. Consider the variance given in (3).

(a) Show that for fixed n, f,H, Var(θ̂g,n) is minimized when

g(x) =
|H(x)|f(x)∫

X |H(x)|f(x)µ(dx)
,

provided that the denominator is greater than zero.

(b) Give an example where
∫
X H

2(x)f(x)µ(dx) <∞ but Var(θ̂g,n) =∞.
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