
Unit 13: Schrödinger Bridge and Iterative Proportional Fitting

13.1 Introduction

Recall that in denoising diffusion models, we construct a diffusion process (Xt)0≤t≤T such
that XT ∼ π. We achieved this by utilizing the reverse-time SDE theory. That is, we
first construct a diffusion process (Yt)0≤t≤T with Y0 ∼ π and then reverse it in time. Note
that we cannot pick an arbitrary SDE for constructing Yt, because we need to evaluate the
distribution of YT (which is also the distribution of X0) so that we can simulate the process
Xt. In Theorem 12.1 (a result used by some popular denoising diffusion models), we require
X0 ∼ π ∗ φσ, where φσ denotes N(0, σ2I), and assuming σ is large enough, we can simply
draw X0 from φσ. Of course this approximation may not always be satisfactory.

In this unit, we introduce a general approach for constructing a diffusion process moving
between two arbitrary distributions. Suppose that we are given a diffusion process (Xt)0≤t≤T
with an arbitrary initial distribution X0 ∼ q0. We can apply an algorithm, known as iterative
proportional fitting (IPF), to modify the dynamics of Xt so that XT ∼ π. To explain how
it works, we begin by first considering the bivariate case, where we only need to simulate
(X0, XT ). This leads to a classical problem that has been well studied in statistics. See Sec-
tion 13.2. Next, we generalize the result to the discrete-time process (X0, Xt1 , Xt2 , . . . , XT );
see Section 13.3. Finally, we present the continuous-time theory; see Section 13.4. In Sec-
tions 13.2 and 13.3, we will use slightly different notation for generality. The methodology
in this unit heavily relies on the concept of Kullback–Leibler divergence.

Definition 13.1. Given two probability measures µ, ν absolutely continuous with respect to
each other, the Kullback–Leibler (KL) divergence is defined by

KL(µ, ν) =

∫
log

(
dµ

dν

)
dµ.

We will also use KL(p, q) to denote the KL divergence between µ and ν, where p, q are the
density functions of µ, ν, respectively.

Exercise 13.1. Prove that KL divergence is always non-negative.

Exercise 13.2. Prove that the KL divergence between the standard normal distribution and
standard Cauchy distribution is infinite.

Exercise 13.3. Let p, q be density functions. Prove that KL(p, q) equals the supremum of∫
f(x)p(x)dx− log

∫
q(x)ef(x)dx,

taken over any function f such that
∫
q(x)ef(x)dx <∞.
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13.2 Iterative Proportional Fitting

Consider two random vectors X, Y ∈ Rd with joint Lebesgue density function q(x, y). Denote
the conditional density functions by qX|Y (x | y) and qY |X(y |x). Let πX(x), πY (y) be two
Lebesgue density functions on Rd, and define

M(πX , πY ) =

{
p(x, y) ≥ 0:

∫
p(x, y)dy = πX(x),

∫
p(x, y)dx = πY (y)

}
to be the collection of all joint density functions with marginals πX and πY . How to find the
joint density function p ∈M(πX , πY ) that minimizes KL(p, q)? This is sometimes known as
the static Schrödinger Bridge problem. It turns out that the solution has a simple charac-
terization. For the proof of the following theorem, see, e.g., [12]

Theorem 13.1. Let q(x, y) denote the joint Lebesgue density function of (X, Y ). If

inf{KL(p, q) : p ∈M(πX , πY )} <∞, (1)

then there exists a unique p∗ ∈M(πX , πY ) achieving the minimum KL divergence in (1), and
it can be expressed as

p∗(x, y) = a(x)b(y)qY |X(y |x), (2)

for some functions a, b ≥ 0.

Remark 13.1. We can also express p∗ by p∗(x, y) = ã(x)b(y)q(x, y) with ã(x) = a(x)/qX(x).

Hence, to solve the static SB problem, it only remains to find the functions a, b in (2),
which is equivalent to solving the so-called Schrödinger system (or Schrödinger equations):∫

a(x)b(y)qY |X(y |x)dy = πX(x), (3)∫
a(x)b(y)qY |X(y |x)dx = πY (y). (4)

Iterative proportional fitting (IPF) is an iterative algorithm for solving this system, which
has a long history in statistics and was first used for estimating cell probabilities of contin-
gency tables [4]. We begin by considering the joint distribution p(0)(x, y) = πX(x)qY |X(y |x),
which in general does not have marginal πY . So we update this distribution by matching
the marginal πY , which leads to p(1)(x, y) = πY (y)p

(0)
X|Y (x | y). Repeating this procedure

yields a sequence of joint distributions p(n) that converge to p∗. See [11] for the proof of the
convergence.

Algorithm 13.1 (Iterative Proportional Fitting). Let a0(x) = π(x), b0(y) = 1 and p(0)(x, y) =
a0(x)b0(y)qY |X(y |x). For k = 1, 2, . . . ,

(i) Set p(2k)(x, y) = πY (y)p
(2k−1)
X|Y (x | y) = a2k(x)b2k(y)qY |X(y |x) where

a2k(x) = a2k−1(x), b2k(y) =
πY (y)∫

a2k−1(x)qY |X(y |x)dx
.
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(ii) Set p(2k+1)(x, y) = πX(x)p
(2k)
Y |X(y |x) = a2k+1(x)b2k+1(y)qY |X(y |x) where

a2k+1(x) =
πX(x)∫

b2k(y)qY |X(y |x)dy
, b2k+1(y) = b2k(y).

13.3 Discrete-time Schrödinger Bridge

We can generalize the static SB problem and IPF algorithm by considering a stochastic
process (X0, X1, . . . , XN) with joint density q(x0, x1, . . . , xN). Let M(π0, πN) denote the
collection of all joint densities p(x0, x1, . . . , xN) such that the marginal distributions of the
first and last component equal π0 and πN respectively. The dynamic SB problem searches
for the optimal p ∈M(π0, πN) that minimizes KL(p, q).

A simple argument shows that the dynamic SB problem can be reduced to the static one.
Let q0,N(x0, xN) denote the marginal distribution of (x0, xN) and q· | 0,N(x1, . . . , xN−1 |x0, xN)
denote the conditional distribution of (x1, . . . , xN−1) given (x0, xN). It can be shown that

KL(p, q) = KL(p0,N , q0,N) + E
[
KL(p· | 0,N(· |X0, XN), q· | 0,N(· |X0, XN))

]
(5)

where the expectation is taken over the distribution p0,N . Since KL divergence is non-
negative, it is clear that the optimal p∗ should take the form

p∗(x0, x1, . . . , xN) = p∗0,N(x0, xN)q· | 0,N(x1, . . . , xN−1 |x0, xN),

where p∗0,N is the solution to the static SB problem.
Now let’s further assume that (X0, . . . , XN) is Markovian. In this case, we obtain an

interesting generalization of the IFP iterations [3]. In the n-th iteration (assuming n is
even), we update our joint density estimate forward in time by

p(n)(x0, . . . , xN) = π0(x0)p
(n−1)
· | 0 (x1, . . . , xN |x0) = π0(x0)

N∏
j=1

p
(n−1)
j | j−1(xj |xj−1),

and in the (n+ 1)-th iteration, we perform the update backward in time by

p(n+1)(x0, . . . , xN) = πN(xN)p
(n)
· |N(x0, x1, . . . , xN−1 |xN) = πN(xN)

N∏
j=1

p
(n)
j−1 | j(xj−1 |xj).

So instead of working with the conditional density pN | 0(xN |x0), we split it into multiple
time steps and update the transition density at each time step separately.

Example 13.1. We present a simple numerical example with N = 4 and Xj ∈ R2. Let π0
be the bivariate normal distribution N(0, I) and π3 be the bivariate normal distribution with

mean (1, 1) and covariance matrix 0.25 ∗
[

1 −0.99
−0.99 1

]
. Let q be the density such that

Xj |Xj−1 ∼ N(Xj−1, 0.05I). We show the first four iterations (2 forward and 2 backward) in
Figure 1, where the red dots indicate the mean.
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Figure 1: IPF for the stochastic process (X0, X1, X2, X3) in Example 13.1. We generate 104 replicates to
visualize the distributions.
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Remark 13.2. The Euler-Maruyama discretization of a diffusion process yields a (possibly
non-homogeneous) Markov chain (Xt0 , Xt1 , . . . , XtN ) with 0 = t0 < t1 < · · · < tN = T .
Assuming that the time step is sufficiently small, one can argue that the conditional distri-
butions p

(n)
j−1 | j and p

(n)
j | j−1 in IPF are both approximately normal (recall Remark 12.1). So in

this case, essentially p(n) is obtained by calculating the reverse-time SDE of p(n−1), which can
be done by score matching in generative modeling. This leads to an iterative algorithm that
trains a diffusion process that evolves from an arbitrary initial distribution to the desired
terminal distribution. Efficient algorithms based on this idea have been proposed in [13, 3].

Exercise 13.4. Prove (5).

13.4 Continuous-time Schrödinger Bridge

Now we present the SB problem for continuous-time diffusion processes. Consider a diffusion
Xt on Rd over the time interval [0, T ], evolving by

dXt = b(Xt, t)dt+ σdBt, t ∈ [0, T ],

with initial distribution Law(X0) = µ0. Denote the distribution of (Xt)0≤t≤T by Pb (which is
a probability measure on the space of all continuous functions on [0, T ]). When b ≡ 0, the
conditional distribution of XT given X0 = x has density

qT |0(y |x) = φσ
√
T (y − x), (6)

where the marginal distribution of XT is µ0 ∗ φσ√T (where ∗ denotes convolution). De-
note the distribution of (Xt)0≤t≤T with b ≡ 0 by P0, which will be treated as the reference
measure. The SB problem asks how to find the “optimal” b such that Law(XT ) = π that
achieves minimal KL divergence between Pb and P0. Solutions have been derived via different
techniques [7, 1, 10, 6, 5]. Below we present a result from [2].

Theorem 13.2. Let qT |0 be given by (6). For every continuous distribution π on Rd, there
exists a unique (up to scaling) pair of σ-finite measures, (ν0, νT ), such that

dµ0

dν0
(x) =

∫
qT |0(y |x)νT (dy), for µ0-almost every x, (7)

dπ

dνT
(y) =

∫
qT |0(y |x)ν0(dx), for every y ∈ Rd. (8)

If
∫
x2µ0(dx) <∞,

∫
(dµ0/dν0)dµ0 <∞, and KL(π, ν0 ∗ φσ√T ) <∞ where φσ

√
T denotes the

normal distribution N(0, σ2TId), then the SB problem has a solution given by

b∗(x, t) = σ2∇x log h(x, t), where h(x, t) =

∫
φσ
√
T−t(y − x)νT (dy).

That is, b∗ = arg minb∈C(π) KL(Pb,P0) where

C(π) = {b : the marginal distribution of XT under Pb equals π}.
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Proof. See [2].

Remark 13.3. Equations (7) and (8) are essentially the Schrödinger system given in (3)
and (4). Equations (7) and (8) are more general since here we do not assume that µ0 is a
continuous distribution.

Example 13.2. Let µ0 be the Dirac measure at x0. Then, the solution to the Schrödinger
system is given by ν0 = µ0, and

νT (dy) =
π(y)

qT |0(y |x0)
dy =

π(y)

φσ
√
T (y − x0)

dy.

In this case,

h(x, t) =

∫
π(y)

φσ
√
T (y − x0)

φσ
√
T−t(x− y)dy.

This has been used in [9, 14] for devising sampling algorithms for generative modeling or
other purposes. In Figure 2, we give an example from [8] illustrating the dynamics of this
optimal diffusion process where d = 2 and π is the mixture of four normal distributions.

Figure 2: Distribution of 1, 000 replicates.

Example 13.3. We can now also derive Theorem 12.1 as a special case of the SB problem.
Let µ0 = π ∗ φσ√T . The solution to the Schrödinger system is given by ν0(x) = 1 and
νT (y) = π(y). Hence, h(t, x) =

∫
π(y)φσ

√
T−t(x− y)dy.
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