
Unit 12: Denoising Diffusion Models

12.1 Introduction

Recall that the Langevin diffusion is given by

dXt = ∇ log π(Xt)dt+
√

2dBt,

where π is the stationary distribution. Hence, if we simulate the process for a sufficiently long
period T , then XT can be thought of as a sample from π. However, determining a sufficiently
large value of T can be quite difficult, and it highly depends on the property of π.

Denoising diffusion models have dynamics similar to the Langevin diffusion. But one
specifies the value of T first and then modifies the drift term according to how much time is
left so that XT is guaranteed to be distributed according to π (at least approximately). The
following theorem gives an example, which is a special case of Theorem 12.2.

Theorem 12.1. Let π be a probability distribution on Rd satisfying certain regularity condi-
tions. Denote the density function of N(0, σ2Id) by φσ(x), and denote the convolution of two
probability distributions µ, ν by µ ∗ ν. Let (Xt)0≤t≤1 be a diffusion process given by

X0 ∼ π ∗ φσ,

dXt = σ2∇x log h(x, t)dt+ σdBt, where h(x, t) =

∫
Rd

π(y)φσ
√
1−t(x− y)dy. (1)

Then, X1 ∼ π.

Example 12.1. Consider part (ii) with d = 1 and π being the standard normal distribution
N(0, 1). Then, X0 ∼ N(0, 1 + σ2) and

dXt = AtXtdt+ σdBt, where At = − σ2

σ2(1− t) + 1
.

Due to the linearity, the solution can be explicitly expressed by

Xt = ΦtX0 + σΦt

∫ t

0

Φ−1s dBs, where Φt = e
∫ t
0 Asds =

σ2(1− t) + 1

σ2 + 1
.

By a result known as Itô isometry,

Var

(∫ t

0

Φ−1s dBs

)
=

∫ t

0

Φ−2s ds.

This can be used to compute the distribution of Xt for every t ∈ [0, 1]; the answer is given
in the exercise below. We will see that a similar result holds for any general choice of π.

Exercise 12.1. Show that in Example 12.1, Xt ∼ N(0, σ2(1− t) + 1) for every t ∈ [0, 1].
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In this unit and the next, we will address the following questions.

(i) How to understand Theorem 12.1, at least intuitively. See Section 12.2.

(ii) How to utilize the SDE given in (1) to devise sampling algorithms. The function h(x, t)
is an integral with respect to the distribution π. Approximating this integral can be as
challenging as sampling from π. See Section 12.3.

(iii) How to relax the assumption X0 ∼ π ∗N(0, σ2Id). Exact sampling from π ∗N(0, σ2Id)
does not seem easier than sampling from π. See the next unit.

Before proceeding, an important remark on the background is needed. So far in this
course, we have considered sampling problems where π is typically known up to a normalizing
constant or at least has an explicit expression. Diffusion models like (1) are widely used in
generative modeling, where the problem setup is quite different: π is completely unknown,
but we have samples drawn from π. In theory, one can use these samples to first estimate π
and then apply the sampling algorithms we have discussed. However, as we will see, a better
approach is to directly estimate ∇x log h(x, t) using the samples without learning π and then
simulate the SDE (1).

12.2 Reverse-time SDE

Given a diffusion process Yt, if we observe the process backward in time, can its dynamics
still be described by a SDE? The following result of [1] provides an answer.

Theorem 12.2. Let (Yt)0≤t≤T be a diffusion over the time interval [0, T ], evolving by

dYt = b(Yt, t)dt+ σ(Yt, t)dBt,

where b, t are continuously differentiable. Let a = σσ> and denote the Lebesgue density of the
distribution of Yt by pt(y) (assumed to exist).1 Under certain regularity conditions, the time-
reversed process, (YT−t)0≤t≤T has the same distribution as the diffusion process (Xt)0≤t≤T
such that

X0 ∼ pT ,

dXt = −b∗(Xt, T − t)dt+ σ(Xt, T − t)dBt, (2)

where

b∗(x, t) = b(x, t)−∇x · a(x, t)− a(x, t)∇x log pt(x),

i.e., b∗i (x, t) = bi(x, t)−
1

pt(x)

∑
1≤j,k≤d

∂

∂xj
{pt(x)σik(x, t)σjk(x, t)} .

1By a slight abuse of notation, we will also use pt to denote the distribution of Yt.
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Example 12.2. Suppose σ(x, t) = σtI for some σt > 0. Then the SDE (2) is simplified to

dXt =
[
−b(Xt, T − t) + σ2

t∇x log pT−t(Xt)
]

dt+ σtdBt, (3)

which has been widely used in the literature on denoising diffusion probabilistic models [2, 4].
If we further assume T = 1, b ≡ 0 and σt ≡ σ, we have

Yt = Y0 + σBt,

and we obtain Theorem 12.1. Note that p0 is also the distribution of X1 (i.e., the distribution
π in Theorem 12.1), and the distribution of Xt is p1−t, the convolution of p0 and N(0, σ2(1−
t)I), which has density h(x, t) as given in (1). This generalizes the claim in Exercise 12.1.

Example 12.3. Suppose that Yt is a Langevin diffusion with dynamics dYt = ∇ log π(Yt)dt+√
2dBt. Let Y0 ∼ π, which implies Yt ∼ π for every t. One can check that in this case, the

time-reversed process Xt follows exactly the same SDE, which is expected since Langevin
diffusions are reversible.

Remark 12.1. The proof of Theorem 12.2 requires Kolmogorov forward/backward equa-
tions, and we refer readers to [1] for details. Here we provide a heuristic argument to offer
some insights into Theorem 12.2. We consider the special case d = 1, b(x, t) = b(x) and
σ(x, t) = σ > 0. Assume that b(x), ∂b(x)/∂x, ∂pt(x)/∂t and ∂2pt(x)/∂x2 all exist and are
bounded over all (x, t).

As we have argued in Remark 10.2, for sufficiently regular function f ,

lim
h↓0

E [f(Yt+h) |Yt = y]− f(y)

h
= b(y)f ′(y) +

1

2
σ2f ′′(y). (4)

Hence, if Xt = YT−t has the dynamics given in (3), it should satisfy that

lim
h↓0

E [f(Yt−h) |Yt = x]− f(x)

h
=
{
−b(x) + σ2∇x log pt(x)

}
f ′(x) +

1

2
σ2f ′′(x). (5)

We now show that (4) indeed implies (5). As in Remark 10.2, we use the second-order Taylor
expansion of f , and our main task is to determine

lim
h↓0

E [Yt−h − Yt |Yt = x]

h
, and lim

h↓0

E [(Yt−h − Yt)2 |Yt = x]

h
.

The key distinction from the forward-time analysis is that Yt−h − Yt and Yt are dependent.
Indeed, if we approximate the conditional distribution of Yt given Yt−h using Euler-Maruyama
discretization, i.e.,

Yt |Yt−h = y ∼ N
(
y + hb(y), hσ2

)
then the conditional density of Yt−h = y given Yt = x is

pt−h|t(y |x) =
pt−h(y)

pt(x)

1√
2πhσ2

exp

{
−(x− y − hb(y))2

2hσ2

}
. (6)

3



Fall 2024 Quan Zhou

By Taylor expansion and our assumption on the derivatives of pt(x),

log pt−h(y)− log pt(x) = log pt−h(y)− log pt(y) + log pt(y)− log pt(x)

= (y − x)∇x log pt(x) +O(h) +O((y − x)2).

Similarly, we have b(y) = b(x) +O(|y − x|). Plugging these approximations into (6), we get

pt−h|t(y |x) ∝ exp

[
−1 +O(h)

2hσ2

{
y − x+ hb(x)− hσ2∇x log pt(x)

}2
+O(h)

]
.

It then follows that

lim
h↓0

E [Yt−h − Yt |Yt = x]

h
= −b(x) + σ2∇x log pt(x),

lim
h↓0

E [(Yt−h − Yt)2 |Yt = x]

h
= σ2.

12.3 Generative Modeling and Score Matching

Consider a general modeling problem where we have access to samples from an unknown
distribution π. In this section, we explain how to use Theorem 12.1 to build algorithms that
can output new samples from π. As we have discussed in Section 12.1, the initial condition
in Theorem 12.1 is difficult to simulate exactly. So we simply assume that σ is sufficiently
large so that X0 approximately follows the normal distribution N(0, σ2I). To simulate the
SDE given in (1),

dXt = σ2∇x log h(x, t)dt+ σdBt, t ∈ [0, 1],

we use the so-called “score matching” technique [3, 5], which we present in Theorem 12.3
below. It allows us to directly estimate ∇x log h(x, t) without learning π.

Let s(x, t) be an estimator for the score ∇x log h(x, t) parameterized by θ (e.g., s can be a
neural network model with parameter vector θ). We can train this estimator (i.e., learn the
value of θ) by minimizing some loss function. The question is how to define the loss function.
Let’s first fix an arbitrary t ∈ [0, 1] and consider measuring the loss at time t. As explained
in Example 12.2, the joint distribution of (Xt, X1) can be described by

X1 ∼ π, Xt |X1 ∼ N(X1, σ
2(1− t)I), (7)

and the marginal distribution of Xt has density

h(x, t) =

∫
Rd

π(y)φσ
√
1−t(x− y)dy.

So we measure the loss (at time t) of the estimator s(x, t) by

Jt(s) = E‖s(Xt, t)−∇x log h(Xt, t)‖22 =

∫
‖s(x, t)−∇x log h(x, t)‖22 h(x, t)dx.
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By Theorem 12.3, instead of matching the marginal score ∇x log h(Xt, t), we can also match
the score ∇xt log q(Xt |X1) by conditioning on X1, where q(Xt |X1) denotes the conditional
density given in (7). Explicitly,

Jt(s) = E‖s(Xt, t) + σ−2(1− t)−1(Xt −X1)‖22 + C

where C is a constant that does not depend on s, and the expectation is taken over the joint
distribution given in (7). Estimating this loss is straightforward since we have samples from
π; denote them by X1,1, X1,2, . . . , X1,n. By generating i.i.d. Z1, . . . , Zn from N(0, Id), we get
the empirical loss

Lt(s) =
1

n

n∑
i=1

‖s(X1,i + ηtZi, t) + η−1t Zi‖22, where ηt =
√
σ2(1− t),

which measures how well s(x, t) approximates ∇x log h(x, t) at time t. To measure the per-

formance of s(x, t) across the time interval [0, 1], we can sample t1, . . . , tn
iid∼ Unif(0, 1) and

define the overall empirical loss by

L(s) =
1

n

n∑
i=1

w(ti)‖s(X1,i + ηiZi, ti) + η−1i Zi‖22, where ηi =
√
σ2(1− ti),

and w : [0, 1]→ (0,∞) is a weighting function chosen by the user.

Theorem 12.3. Let (X, Y ) be random vectors with joint Lebesgue density function qX,Y (x, y).
Denote the marginal densities by qX(x), qY (y), and denote the conditional density functions
by qX|Y (x | y), qY |X(y |x). Assume that qX,Y is sufficiently regular so that for any y,2∫

qX|Y (x | y)∇y log qX|Y (x | y)dx = 0 (8)

Then, for any function s(y),∫
‖s(y)−∇ log qY (y)‖22 qY (y)dy =

∫
‖s(y)−∇y log qY |X(y |x)‖22 qX,Y (x, y) dx dy + C

where C is a constant independent of s.

Proof. By Fisher’s identity which is given in Exercise (12.2) below,∫ {
s(y)>∇ log qY (y)

}
qY (y)dy =

∫ {
s(y)>

∫
qX|Y (x | y)∇y log qY |X(y |x)dx

}
qY (y)dy

=

∫ {
s(y)>∇y log qY |X(y |x)

}
qX,Y (x, y) dx dy.

2All we need is that differentiation and integration can be interchanged in (8).
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At the same time, ∫
‖s(y)‖22 qY (y)dy =

∫
‖s(y)‖22 qX,Y (x, y) dx dy.

Hence,

E‖s(Y )−∇ log qY (Y )‖22 = E
[
‖s(Y )‖22 − 2s(Y )>∇y log qY |X(Y |X)

]
+ C ′,

where C ′ is some constant independent of s. A simple calculation completes the proof.

Exercise 12.2. Prove that (8) implies∫
qX|Y (x | y)∇y log qY |X(y |x)dx = ∇ log qY (y).
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