
Unit 11: Extensions of Langevin Monte Carlo Sampling

11.1 Scaled Langevin Diffusions

Let Xt be a d-dimensional diffusion driven by a d-dimensional Brownian motion, given by

dXt = b(Xt)dt+ σ(Xt)dBt. (1)

Define a(x) = σ(x)σ(x)>, and assume its entries are sufficiently smooth. As in the last unit,
we will use the notation b(x) = [bi(x)]di=1 and a(x) = [aij(x)]1≤i,j≤d. Recall that the stationary
distribution π, if it exists, should satisfy the forward equation

−
d∑
i=1

∂[bi(x)π(x)]

∂xi
+

1

2

d∑
i=1

d∑
j=1

∂2[aij(x)π(x)]

∂xi∂xj
= 0. (2)

We now give more examples of diffusions that satisfy this equation, where the drift coefficient
b(x) still involves ∇ log π(x) but the diffusion coefficient σ(x) is no longer constant.

Example 11.1. We first give a general solution. Let a(x) be given, and we define

bi(x) =
1

2

{
d∑
j=1

aij(x)
∂ log π(x)

∂xj
+

d∑
j=1

∂aij(x)

∂xj

}
. (3)

Then, the resulting diffusion has π as the stationary distribution (assuming regularity con-
ditions hold) and is reversible. This was used in [14] to design a class of MALA algorithms.

Exercise 11.1. Verify that a(x), b(x) given in Example 11.1 solve (2).

Example 11.2. Let d = 1, in which case (3) simplifies to

b(x) =
1

2

{
a(x)

d log π(x)

dx
+

da(x)

dx

}
.

The property of the resulting diffusion process was analyzed in [12].

Example 11.3 (Langevin tempered diffusion). Let a(x) = π(x)−2γI with γ ∈ [0, 1/2]. Then
b(x) given in (3) can be expressed by

b(x) =
1− 2γ

2
a(x)∇ log π(x).

Such diffusions are called Langevin tempered diffusions and analyzed in [11].

Example 11.4. A special case of the Langevin tempered diffusion was studied in [6]. Assume
that π(x) ∝ g(x)−β for some β > 0, and let γ = 1/(2β) in Example 11.3. Then,

a(x) = g(x)I, b(x) = −β − 1

2
∇g(x).
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11.2 Non-reversible Langevin Diffusion

Consider SDE (1) and fix
σ(X) =

√
2I,

where I is the identity matrix. In this case, Xt is reversible with respect to π if and only
if b(x) = ∇ log π(x). For d ≥ 2, we can construct a non-reversible Langevin diffusion with
stationary distribution π by letting

b(x) = (I + S)∇ log π(x), (4)

where S ∈ Rd×d is a fixed skew-symmetric matrix; see the definition below. Note that the
diagonal elements of S must be zeros.

Definition 11.1. We say S is a skew-symmetric matrix if S = −S>.

Exercise 11.2. Show that (2) is satisfied if a(x) = 2 and b(x) is given by (4), with S being
an arbitrary skew-symmetric matrix.

Example 11.5. Let d = 2 and π be the standard normal distribution N(0, I). Then
∇ log π(x) = −x, and

b(x) =

[
1 s
−s 1

] [
−x1
−x2

]
=

[
−x1 − sx2
sx1 − x2

]
,

where s ∈ R can be any constant. See
More generally, let π be the d-dimensional normal distribution N(0,Σ) for some d > 1.

Then, ∇ log π(x) = −Σ−1x, and b(x) = −(I + S)Σ−1x. It was shown in [7] that as long as
Σ does not have identical eigenvalues, using any skew-symmetric matrix S will improve the
convergence of Xt.

For more general results about the diffusion Xt beyond the Gaussian case, see, e.g. [8, 10].
Discretizing the diffusion (e.g. by the Euler-Maruyama scheme) yields a practical algorithm
for sampling from π, and the convergence rates of such algorithms have been studied in the
more recent literature; see [5] among many others.

Figure 1: Directions of b(x) in Example 11.5 with d = 2.
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11.3 Underdamped Langevin Diffusion

Let π(x) ∝ ef(x). A more complicated non-reversible generalization of the Langevin diffusion,
known as underdamped Langevin diffusion, involves an auxiliary d-dimensional diffusion
process Vt. The system (Xt, Vt) evolves by

dXt = Vtdt,

dVt = φ∇f(Xt)dt− λVtdt+
√

2λφ dBt,

where λ, φ > 0 are parameters (λ is often known as the friction coefficient). The joint
stationary distribution is given by

π(x, v) ∝ exp

{
f(x)− 1

2φ
‖v‖22

}
. (5)

Exercise 11.3. Show that the stationary distribution π(x, v) given in (5) satisfies the forward
equation (2) for the 2d-dimensional process (Xt, Vt).

To simulate the underdamped Langevin diffusion, we can still use Euler-Maruyama dis-
cretization, which gives

V̂(n+1)h = V̂nh + h
(
φ∇f(X̂nh)− λV̂nh

)
+
√

2λφZn+1,

X̂(n+1)h = X̂nh + hV̂nh.

where h is the time increment size and Z1, Z2, . . . are i.i.d. standard normal random variables.
A more accurate discretization can be obtained with minimum additional computational cost.
We need to use the following lemma for linear SDE [9] (proof is omitted).

Lemma 11.1. Let Yt ∈ Rd be the solution to the linear SDE

dYt = (AYt + C)dt+DdBt (6)

where A ∈ Rd×d, C ∈ Rd, D ∈ Rd×d are fixed. Fix Y0 = y ∈ Rd. Then, Yt is normally
distributed with

E[Yt] = etAy +

∫ t

0

e(t−s)ACds,

Var(Yt) =

∫ t

0

e(t−s)ADD>e(t−s)A
>

ds.

We now modify the naive discretization scheme by still usinng ∇f(Xt) ≈ ∇f(X̂nh) over
the time interval [nh, (n+ 1)h) but integrating over the path of Brownian motion.

Lemma 11.2. Fix x, v ∈ Rd. Let X̃t, Ṽt be the solution to

dX̃t = Ṽtdt,

dṼt = φ∇f(x)dt− λṼtdt+
√

2λφ dBt,
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with X̃0 = x, Ṽ0 = v. Then, (X̃t, Ṽt) is normally distributed with

E[X̃t] = x+ λ−1(1− e−λt)v − φλ−2(1− e−λt − λt)∇f(x),

E[Ṽt] = e−λtv + φλ−1(1− e−λt)∇f(x),

Var(X̃t) = φ

{
2t

λ
− 4

λ2
(1− e−λt) +

1

λ2
(1− e−2λt)

}
I,

Var(X̃t, Ṽt) =
φ

λ

(
1− 2e−λt + e−2λt

)
I,

Var(Ṽt) = φ(1− e−2λt)I.

Denote this normal distribution by Ft(x, v).

Proof. Write Ỹt = (X̃t, Ṽt). Then, it satisfies the linear SDE (6) with

A =

[
0 I
0 −λI

]
, C =

[
0

φ∇f(x)

]
, D =

[
0 0
0
√

2λφI

]
.

Note that for k ≥ 1,

Ak =

[
0 (−λ)k−1I
0 (−λ)kI

]
.

Then a routine calculation using Lemma 11.1 yields the results.

Hence, we can simulate the underdamped Langevin diffusion as follows. Let h, X̃0, Ṽ0
be given. For n = 1, 2, . . . we sample (X̃nh, Ṽnh) from the distribution Fh(X̃(n−1)h, Ṽ(n−1)h),
where Fh(x, v) is defined in Lemma 11.2. See, e.g., [1] for the convergence analysis of this
sampler. The dynamics of this sampler is very similar to that of Hamiltonian Monte Carlo.

11.4 Tempering of Langevin Diffusion

Let π(x) ∝ ef(x) and πβ(x) ∝ eβf(x). Observe that ∇ log πβ(x) = β∇ log f(x). Hence, the
diffusion process Xt with dynamics

dXt = ∇ log f(Xt) +
√

2β−1dBt

has stationary distribution πβ. Its Euler-Maruyama discretization yields the sequence (X̂nh)n≥0
such that

X̂nh = X̂(n−1)h +∇ log f(X̂(n−1)h) +
√

2hβ−1Zn,

where Z1, Z2, . . . are i.i.d. standard normal random variables. Compared with the Langevin
Monte Carlo algorithm targeting π, the only difference is that the variance of the Gaussian
noise has changed to 2h/β. A smaller β (i.e., higher temperature) corresponds to larger
variance of the noise. Observe that as β → ∞, we actually recover the gradient descent
algorithm, an optimization algorithm for finding x∗ = arg maxx π(x), which is not surprising
since πβ converges towards the Dirac measure at x∗.
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Simulated tempering and parallel tempering techniques can also be combined with Langevin
diffusion. For example, pick two inverse temperatures β1, β2 > 0 and define two diffusions
X1, X2 by

dX1
t = ∇ log f(X1

t ) +

√
2β−11 dB1

t ,

dX2
t = ∇ log f(X2

t ) +

√
2β−12 dB2

t ,

where B1, B2 denote two independent Brownian motions. The joint stationary distribution
is given by

π(x1, x2) ∝ exp {β1f(x1) + β2f(x2)} .
Then, we simulate swapping times τ1, τ2, . . . by drawing (τk − τk−1)k≥1 independently from
an exponential distribution with rate κ > 0. At each τk, we propose swapping the states of
two diffusions. Explicitly, letting τ = τk, x1 = X1

τ , x2 = X2
τ , we propose setting (X1

τ+, X
2
τ+) =

(x2, x1). According to the Metropolis–Hastings rule, we can accept this proposal with prob-
ability

α(x1, x2) = min

{
1,
π(x2, x1)

π(x1, x2)

}
,

which leaves the joint stationary distribution of the two diffusions unchanged. See, e.g., [4, 3]
for the theoretical analysis of the process (X1

t , X
2
t ), which is often known as the replica-

exchange Langevin diffusion.

11.5 Stochastic Gradient Langevin Dynamics

Suppose that π(θ) is a posterior distribution with θ ∈ Rd being the parameter of some
Bayesian statistical model. Let π0(θ) denote the prior distribution and assume that we have
n i.i.d. observations y1, . . . , yn with density f(yi | θ). Then, we can express π by

π(θ) ∝ π0(θ)
n∏
i=1

f(yi | θ),

which yields

U(θ) := ∇ log π(θ) = ∇ log π0(θ) +
n∑
i=1

∇ log f(yi | θ)

where ∇ always denotes the gradient with respect to θ. We can unbiasedly estimate U(θ) by
drawing a simple random sample S ⊂ {1, 2, . . . , n} of size m and computing

Û(θ) = ∇ log π0(θ) +
n

m

∑
i∈S

∇ log f(yi | θ). (7)

Note that S can be generated with or without replacement. This subsampling technique is
very useful when n is huge (indeed, similar techniques are commonly used in training neural
networks). Naturally, it leads to the following generalization of the Langevin Monte Carlo
algorithm, known as stochastic gradient Langevin dynamics (SGLD).
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Algorithm 11.1 (stochastic gradient Langevin dynamics). Let θ0 ∈ Rd, h > 0 be given. For
n = 1, 2, . . . ,

(i) draw a subset S ⊂ {1, 2, . . . , n} containing m samples and calculate Û(θn−1) by (7);

(ii) draw Zn ∼ N(0, 1) and set

θn = θn−1 + hÛ(θn−1) +
√

2hZn.

SGLD was proposed by [13] and has become very popular in the machine learning com-
munity. In [13], a sequence of varying step sizes (hn)n≥1 was considered. Here, for simplicity,
we fix the step size so that SGLD can be viewed as a noisy version of the Langevin Monte
Carlo algorithm discussed in the last unit. Essentially the same coupling argument can be
used to analyze the convergence of SGLD; see [2].
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