
Unit 10: Langevin Diffusion

10.1 Brownian Motion and Stochastic Differential Equations

Let Z1, Z2, . . . be i.i.d. random variables with zero mean and unit variance. Define Sn =
Z1 + · · ·+Zn with S0 = 0. Define (X

(n)
t )0≤t≤1 as the scaled linear interpolation of (Sj)1≤j≤n:

X
(n)
t =

1√
n
Sbntc +

nt− bntc√
n

Zbntc+1.

Note that the trajectory (X
(n)
t )0≤t≤1 is very easy to simulate and visualize. First, one gen-

erates Z1, . . . , Zn and calculates the partial sums (Sk)0≤k≤n. Then, one calculates X
(n)
k/n =

Sk/
√
n for each k = 0, 1, . . . , n. Finally, connecting (X

(n)
k/n)0≤k≤n by straight lines yields the

trajectory (X
(n)
t )0≤t≤1. An application of multivariate CLT yields the following result.

Exercise 10.1. Prove that

(i) for any fixed t ∈ (0, 1], X
(n)
t

D→ N(0, t) as n→∞;

(ii) for any fixed 0 < s < t ≤ 1, (X
(n)
s , X

(n)
t −X

(n)
s ) converges in distribution, as n → ∞,

to a bivariate normal random vector with independent coordinates.

Moreover, letting X(n) = (X
(n)
t )0≤t≤1, we have that X(n) converges weakly to a stochastic

process, B = (Bt)0≤t≤1, which is called the (one-dimensional) Brownian motion or the Wiener
process; see Figure 1 for a simulated trajectory. A lot of technical details are omitted here
(e.g., why does this limit exist), since they are not important to the development of the
sampling algorithms we will discuss. This construction can be extended to the time interval
t ∈ [0,∞) straightforwardly, and it is clear from the construction that the resulting process
B = (Bt)t>0 satisfies the following conditions:

(i) B0 = 0;

(ii) Bt0 , Bt1 −Bt0 , . . . , Btn −Btn−1 are independent for any 0 ≤ t0 < t1 < · · · < tn <∞;

(iii) for any s, t ≥ 0, Bs+t −Bs ∼ N(0, t);

(iv) sample paths of B are a.s. continuous.

Indeed, Brownian motion is defined as the stochastic process that satisfies the above four
conditions. The following result (proof omitted) is known as the scaling property of the
Brownian motion.

Theorem 10.1. Let Bt be a Brownian motion. Then, for any λ > 0, B̃t = λ−1/2Bλt is also
a Brownian motion.
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Figure 1: A simulated sample path of the Brownian motion.

Let ξ be a random variable independent of Bt. Consider the following equation:

X0 = ξ,

dXt = b(Xt, t)dt+ σ(Xt, t)dBt,

where b : R × [0,∞) → R and σ : R × [0,∞) → R. This is called a stochastic differential
equation (SDE), since the dynamics of Xt depends on the random process Bt. Under some
conditions, there exists a unique solution to this SDE (the exact meaning of a “unique
solution” here is beyond the scope of this course), and we call this solution, which is a
stochastic process with a.s. continuous sample paths, a diffusion.

What will be more relevant to this course is how we numerically simulate a diffusion.
This can be done in a way very similar to the finite difference method used for simulating
deterministic differential equations.

Algorithm 10.1 (Euler-Maruyama Method). Let h denote the size of each time increment,
and N be the number of steps we will simulate. Define tn = nh for each n = 0, 1, . . . , N . Set
X̂0 = ξ, where ξ is drawn from its distribution. For n = 1, . . . , N , set

X̂tn = X̂tn−1 + b(X̂tn−1 , tn−1)h+ σ(X̂tn−1 , tn−1)(Btn −Btn−1).

By the properties of Brownian motion, (Btn − Btn−1)
N
n=1 are i.i.d. with distribution N(0, h),

and Btn − Btn−1 is independent of X̂tn−1 for each n. That is, we can draw i.i.d. Z1, Z2, . . .
from N(0, I) and set

X̂tn = X̂tn−1 + b(X̂tn−1 , tn−1)h+ h1/2σ(X̂tn−1 , tn−1)Zn.

We can also define Brownian motion and diffusions on Rd for d > 1. For simplicity, we still
denote the d-dimensional Brownian motion by Bt, which has d independent coordinates, each
being a one-dimensional Brownian motion. Note that for a d-dimensional diffusion process Xt

satisfying dXt = b(Xt, t)dt + σ(Xt, t)dBt, with Bt being a d′-dimensional Brownian motion,
we have b : Rd × [0,∞)→ Rd and σ : Rd × [0,∞)→ Rd×d′ .
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10.2 Langevin Diffusion

Let π be a continuous probability distribution on Rd; denote its density function by π(x),
which is assumed to be continuously differentiable. The diffusion Xt which evolves by

dXt = ∇ log π(x)dt+
√

2dBt,

is called a Langevin diffusion. It is a reversible continuous-time process with stationary
distribution π, provided that Xt does not explode; see Remarks 10.1 and 10.2 below. A
sufficient condition that guarantees the non-explosion is [2]:

〈∇ log π(x), x〉 ≤ a‖x‖22 + b, ∀x s.t. ‖x‖2 ≥ C,

where a, b, C < ∞ are fixed constants. Similar to the scaling property of Brownian motion,
we can also re-scale the Langevin diffusion by considering

dX̃t = λ∇ log π(x)dt+
√

2λ dBt,

for any λ > 0. Then, X̃t still has π has the stationary distribution.

Example 10.1. Let π be the multivariate normal distribution N(0, φ−1I). Then, the result-
ing Langevin diffusion is given by

dXt = −φXtdt+
√

2dBt.

This is known as the Ornstein-Uhlenbeck process.

Example 10.2. Let d = 1 and π(x) ∝ exp(−γ|x|β) for some γ, β > 0. Then,

∇ log π(x) = −γβ sgn(x) |x|β−1.

It was shown in [2] that in this case, Langevin diffusion converges to π exponentially fast
if and only if β ≥ 1 (see [2] for the exact statement). The intuition behind this result is
very important and applies to many MCMC algorithms: the convergence rate of a sampling
algorithm largely depends on the tail decay rate of the target distribution.

Remark 10.1. Consider a d-dimensional diffusion Xt evolving by

dXt = b(Xt)dt+ σ(Xt)dBt, (1)

where Bt is d′-dimensional. When we say Xt has a stationary distribution π, it means that
if X0 ∼ π, then Xt ∼ π for every t > 0. Not every diffusion process has a stationary
distribution; for example, Brownian motion has no stationary distribution. Under certain
conditions, the stationary distribution π exists and satisfies the forward Kolmogorov equation
(also known as Fokker–Planck equation):

−∇ · (b(x)π(x)) +
1

2
∇ · ∇ · (a(x)π(x)) = 0, (2)
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where a(x) = σ(x)σ(x)> and ∇ · F denotes the divergence of the vector-valued function F .
More explicitly, we denote functions b, a by b(x) = (b1(x), . . . , bd(x)) and a(x) = (aij(x))1≤i,j≤d,
and then (2) can be written as

−
d∑
i=1

∂[bi(x)π(x)]

∂xi
+

1

2

d∑
i=1

d∑
j=1

∂2[aij(x)π(x)]

∂xi∂xj
= 0. (3)

For the Langevin diffusion, we have b(x) = ∇ log π(x) and a(x) = 2I, and it is easy to verify
that (3) is satisfied.

Remark 10.2. Here we give an informal justification for why Langevin diffusion has the
desired stationary distribution. Consider (1) with d = 1. Fix some h > 0, and denote
X = X0 and

Y = X + h b(X) + σ(X)
√
hZ, Z ∼ N(0, 1).

So this is just one step of the Euler-Maruyama discretization. For a smooth function f ,

f(y) = f(x) + (y − x)f ′(x) +
1

2
(y − x)2f ′′(x) + o((y − x)2)

by Taylor expansion. Now consider E[Y |X = x], which can be expressed by

E[f(Y ) |X = x] ≈ f(x) + f ′(x)E[(Y − x)] +
1

2
f ′′(x)E[(Y − x)2]

= f(x) + h b(x)f ′(x) +
1

2
hσ2(x)f ′′(x) + o(h),

where in the first equation we have omitted the remainder term. This shows that

lim
h↓0

E[f(Y ) |X = x]− f(x)

h
= b(x)f ′(x) +

1

2
σ2(x)f ′′(x). (4)

(Again this is an informal derivation; we need more regularity assumptions on b, σ, f so that
this holds.) Now if π is the stationary distribution of Xt, and we let X0 ∼ π, then we expect
that dE[f(Xt)]/dt = 0 for any well-behaved function f . Using (4) and

E[f(Xt)]− E[f(X0)] =

∫
R
{E[f(Xt) |X0 = x]− f(x)} π(x)dx,

assuming that we can interchange the order of limit and integral, we get∫
R

{
b(x)f ′(x) +

1

2
σ2(x)f ′′(x)

}
π(x)dx = 0.

If b(x) = ∇ log π(x) = π′(x)/π(x) and σ2(x) = 2, the left-hand side is∫
R
{π′(x)f ′(x) + π(x)f ′′(x)} dx = π(x)f ′(x)

∣∣∣∞
−∞

,

which equals zero under certain regularity conditions (e.g., π(x) vanishes at ±∞ and f ′(x)
is bounded).
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We can use Euler-Maruyama method to simulate the Langevin diffusion. This yields a
discrete-time Markov chain (X̂tn)n≥0, which is often called the unadjusted Langevin algorithm
(ULA) or the Langevin Monte Carlo algorithm (LMC). Due to the time discretization, ULA
does not have π as the stationary distribution. To correct for this bias, we can use the
acceptance-rejection step in the Metropolis–Hastings algorithm, and the resulting algorithm
is MALA (Metropolis-adjusted Langevin algorithm), which we have discussed in Unit 3. Note
that to simulate the Langevin diffusion, we only need to be able to evaluate ∇ log π, which
does NOT require the knowledge of the normalizing constant.

10.3 Convergence of Langevin Monte Carlo Sampling

Now consider the Langevin Monte Carlo algorithm for sampling from the distribution π
(i.e., the Euler-Maruyama discretization of Langevin diffusion without Metropolis–Hastings
correction). To simplify the notation, we use Y0, Y1, . . . to denote the samples generated from
this algorithm, which satisfy Y0 ∼ ν0 and

Yn+1 = Yn + h∇ log π(Yn) +
√

2hZn+1, (5)

for each n ≥ 0, where h > 0 is the step size, and Z1, Z2, . . . are independent standard normal
random variables. Let νn denote the distribution of Yn. Since (Yn)n≥0 is a discretization of
the Langevin diffusion, if h is sufficiently small, we expect that the distribution νn will be
sufficiently close to π as n increases. Such convergence analysis of the Langevin Monte Carlo
algorithm (and its variants) has been an important research focus among the theoretical
machine learning community. Here is a link to a free textbook on this topic.

In this lecture note, we give a brief review of the method used in [1] for analyzing the
convergence rate of νn towards π. The main idea is coupling. Let (Xt)t≥0 denote the Langevin
diffusion with X0 ∼ π, which implies Xt ∼ π for every t > 0. Taking integral on both sides
of the Langevin SDE, we get

Xt = X0 +

∫ t

0

∇ log π(Xs)ds+
√

2Bt. (6)

Hence,

X(n+1)h = Xnh +

∫ (n+1)h

nh

∇ log π(Xs)ds+
√

2(B(n+1)h −Bnh).

So far, the two chains (Yn)n≥0 and (Xnh)n≥0 are defined separately, and note that compar-
ing the distance between νn and π is equivalent to comparing the distance between Law(Yn)
and Law(Xnh). The “coupling” technique means that we construct (Yn)n≥0 and (Xnh)n≥0
jointly, in whatever way we want as long as the marginal dynamics of each chain is un-
changed, so that Yn and Xnh become as close to each other as possible. (For example, if we
can somehow let Yn and Xnh be always equal, then this implies that νn and π are the same.)
In particular, by the definition of Wasserstein distance (see Remark 10.3), we have

W2(νn, π) ≤
(
E‖Xnh − Yn‖22

)1/2
,
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where W2 denotes the L2-Wasserstein distance.
Here is the coupling strategy we use. Let the Brownian motion Bt in (6) be given, and

then let Z1, Z2, . . . in (5) be given by
√
hZn+1 = B(n+1)h −Bnh. (7)

We can do this because Brownian motion has independent normal increments; that is, this
construction does not change the joint distribution of (Z1, Z2, . . . ). To simplify the notation,
let us write U(x) = ∇ log π(x). Define ∆n = Xnh − Yn, which satisfies

∆n+1 = X(n+1)h − Yn+1

= Xnh +

∫ (n+1)h

nh

U(Xs)ds− Yn − hU(Yn)

= ∆n +

∫ (n+1)h

nh

{U(Xs)− U(Xnh)} ds+ h {U(Xnh)− U(Yn)}

= ∆n + An + hWn

where in the second step the normal increments have canceled out, and

An =

∫ (n+1)h

nh

{U(Xs)− U(Xnh)} ds, Wn = U(Yn + ∆n)− U(Yn).

If π is log-concave, then U is monotone decreasing (in every coordinate), and this implies that
‖∆n+1‖2 ≤ ‖∆n + hWn‖2. In [1], it is further assumed that U is strongly concave and has a
Lipschitz continuous gradient (see the section “Proximal Sampling” in Unit 5 for definitions),
and it is shown that (E‖∆n+1‖22)1/2 ≤ γ(E‖∆n‖22)1/2 + c for some γ ∈ (0, 1) and c > 0. A
routine calculation then yields an upper bound on E‖∆n‖22.

We conclude this unit with a numerical simulation illustrating this coupling idea. We let
π be the standard univariate normal distribution, which has U(x) = ∇ log π(x) = −x. Next
we simulate the two processes X and Y over the time interval [0, 2]. For Xt, we generate
X0 from π and use Euler-Maruyama method with time step size hx = 10−4 (so that the
discretization error is almost negligible). For Yn, we fix Y0 = 0.2 and use step size hy = 0.01,
with Z1, Z2, . . . given by (7). Four simulated sample paths are shown in Figure 2, from which
we can see a very clear tendency of |∆n| (the difference between the two lines) to decrease.

Remark 10.3. Let µ, ν be two probability distributions defined on the same space. The
Wasserstein distance between µ, ν is defined by

Wp,ρ(µ, ν) = inf
{

(E[ρ(X, Y )p])1/p : Law(X) = µ, Law(Y ) = ν
}
,

where ρ is a distance function. For example, if X, Y ∈ Rd, we can let ρ(x, y) = ‖x− y‖2 be
the Euclidean distance. Hence, any construction of (X, Y ) with the given marginals yields
an upper bound on the Wasserstein distance. So, for this coupling-based analysis, the choice
of Wasserstein distance as the convergence metric is quite natural and simpifies the analysis.
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Figure 2: Coupling of ULA (blue) and Langevin diffusion (red).
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