
Lecture 9

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
10.2 and 10.3 of Resnick [6] and Chapter 4.1 of Durrett [3].

9.1 Conditional expectations

Definition 9.1. Consider a probability space (Ω,F ,P), a sub-σ-field G ⊂ F ,
and a random variable X such that E|X| < ∞. The conditional expectation
of X given G, denoted by E[X | G], is a random variable such that

(i) E[X | G] is G-measurable;

(ii) for any A ∈ G, we have
∫
A
XdP =

∫
A
E[X | G]dP.

Any random variable that satisfies the above two properties is called a version
of E[X | G]. For two random variables X, Y defined on the same probability
space, we often write E[X | Y ] = E[X | σ(Y )].

Theorem 9.1. There exists a random variable that satisfies (i) and (ii) in
Definition 9.1. Further, such a random variable is essentially unique, which
means that any two versions of E[X | G] are equivalent almost surely.

Proof. Here we only give the proof for a non-negative and integrable random
variable X ≥ 0.

(Existence.) It can be shown that (see also Theorem 5.6)

ν(A) =

∫
A

XdP, ∀A ∈ G

defines a σ-finite measure on (Ω,G) (since ν(Ω) < ∞ by the integrability
assumption). Let P|G be the restriction of P to G; that is, P|G is a measure
on (Ω,G) and P|G(A) = P(A) for every A ∈ G. Then, we have ν ≪ P|G and
by Radon-Nikodym theorem, the derivative dν/dP|G is G-measurable and∫

A

XdP = ν(A) =

∫
A

dν

dP|G
dP|G, ∀A ∈ G.
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Because P agrees with P|G on G, we have∫
A

dν

dP|G
dP|G =

∫
A

dν

dP|G
dP.

(This argument is not most rigorous. But one can prove it rigorously by
starting from simple functions and then considering general non-negative
functions.) So dν/dP|G is a version of E[X | G]. Its existence follows from
Radon-Nikodym theorem.

(Uniqueness.) By the uniqueness part of the Radon-Nikodym theorem, if
there exists any other random variable, say Z, that satisfies properties (i)
and (ii), it must be equal to dν/dP|G, P|G-a.e. But “P|G-a.e.” implies “P-
a.e.”, which concludes the proof.

Example 9.1. Consider a six-faced fair die. The sample space is given by
Ω = {1, 2, 3, 4, 5, 6}. Let P be the uniform probability measure on (Ω,F),
where F = P(Ω), such that P({ω}) = 1/6 for ω = 1, 2, . . . , 6. Let X be a
random variable on (Ω,F) defined by X(ω) = ω. Consider a sub-σ-algebra
G defined as

G = {∅, {1, 2, 3}, {4, 5, 6},Ω}.

Note that we can define a random variable Y (ω) = 1{1,2,3}(ω), which satisfies
σ(Y ) = G. The conditional expectation E[X | G] is given by

E[X | G](ω) =
{

2 if ω ∈ {1, 2, 3},
5 if ω ∈ {4, 5, 6}.

To verify this claim, we need to check the two conditions. The first one that
E[X | G] is G-measurable is obvious upon noticing that E[X | G] and Y
should generate the same σ-algebra. To verify the second condition, we need
to check the equality holds for all the four sets in G. Here we only do it for
the set {1, 2, 3}:∫

{1,2,3}
XdP =

3∑
ω=1

X(ω)P({ω}) = 1

6
× (1 + 2 + 3) = 1,

∫
{1,2,3}

E[X | G]dP =
3∑

ω=1

E[X | G](ω)P({ω}) = 2× (
1

6
+

1

6
+

1

6
) = 1.
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Example 9.2. Consider a probability space (Ω,F ,P). Let Ω1,Ω2, . . . be a
countable partition of the entire sample space Ω (“partition” implies “dis-
joint”) such that P(Ωi) > 0 for each i. Define a sub-σ-algebra by

G = σ(Ω1,Ω2, . . . ).

Then, one can show that the conditional expectation of a random variable
X given G is

E[X | G](ω) =
∑
i≥1

∫
Ωi
XdP

P(Ωi)
1Ωi

(ω), a.s.

Observe that equivalently this can be expressed as, almost surely,

E[X | G](ω) = E[X1Ωi
]

P(Ωi)
, if ω ∈ Ωi.

This justifies why in elementary probability, we use the following formula to
calculate the conditional expectation given any A ∈ F ,

E[X | A] = E[X1A]

P(A)
.

(In the above notation, E[X | A] is a real number, not a random variable.
We usually avoid using such notation in measure-theoretic probability.)

Remark 9.1. Let Y : (Ω,F) → (Λ,H). Consider a version of E[X | σ(Y )],
which by definition is a mapping from Ω to R and should be σ(Y )-measurable.
By Proposition 3.5, there exists a function h : (Λ,H) → (R,B(R)) such that
E[X | σ(Y )](ω) = (h ◦ Y )(ω) = h(Y (ω)). This justifies why in statistics, we
often use the notation E[X | Y = y]; it is defined as E[X | Y = y] = h(y).

Remark 9.2. Consider 1{X∈A} for a random variable X and A ∈ B(R). Let
Y be another random variable with an absolutely continuous distribution.
From Remark 9.1, P(X ∈ A | Y = y) := E[1{X∈A} | Y = y] = h(y) for some
measurable function h. Further, it can be shown that1, for almost every y,

h(y) = lim
δ↓0

P(X ∈ A | Y ∈ (y − δ, y + δ]).

The right-hand side can be evaluated by using elementary formula for condi-
tional probabilities. This yields a natural interpretation of P(X ∈ A | Y = y).

1This is quite non-trivial; see Probability and Measures by Billingsley.
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Example 9.3. Let X, Y be independent standard normal random variables,
and consider P(X ∈ A | X = Y ). In light of Remark 9.2, we may want to
interpret P(X ∈ A | X = Y ) as the limit of P(X ∈ A | Bn) for some sequence
of events {Bn}n≥1 that converges to {X = Y }. This will be problematic,
because the limit, even if it exists, largely depends on how we construct
the sequence {Bn}n≥1. For example, we can let U = X − Y and BU

n =
{|U | < n−1}; we can also let V = X/Y and BV

n = {|V − 1| < n−1}. But
limn→∞ P(X ∈ A | BU

n ) and limn→∞ P(X ∈ A | BV
n ) are unequal in general.

(You can use the formula given in Proposition 9.4 to verify that the regular
conditional distribution of X | U = 0 and X | V = 1 are actually different.)
This is not too surprising upon observing that σ(U) ̸= σ(V ). Whenever we
do conditioning, we should think about the σ-algebra we are conditioning on.
The two random variables E[1{X∈A} | σ(U)] and E[1{X∈A} | σ(V )] are very
different. A similar example is given by the Borel-Kolmogorov paradox.

9.2 Properties of conditional expectations

For all results below, assume the probability space (Ω,F ,P) is given.

Proposition 9.1 (Basic properties of conditional expectation). Let X, Y be
integrable random variables and G ⊂ F be a given sub-σ-algebra.

(i) For a, b ∈ R, E[(aX + bY ) | G] = aE[X | G] + bE[Y | G], a.s.

(ii) If X = c where c ∈ R, then E[X | G] = c, a.s.

(iii) If X ≥ Y , then E[X | G] ≥ E[Y | G], a.s.

(iv) If X ∈ G, then E[X | G] = X, a.s.

(v) E[X | {∅,Ω}] = E[X].

(vi) Law of total expectation: E[E[X | G] ] = E[X].

(vii) Tower property: If H is another σ-algebra such that H ⊂ G ⊂ F , then

E[E[X | G] | H] = E[E[X | H] | G] = E[X | H], a.s.

(viii) Suppose E|XY | < ∞ and Y ∈ G. Then E[XY | G] = Y E[X | G], a.s.
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Remark 9.3. By part (vi), E[E[X | Y ] ] = E[X] for any random variable
Y , which is the non-measure theoretic version of the law of total expectation.
Actually, part (vi) is just a special case of part (vii). Let H = {∅,Ω}. Then,
by part (v), E[E[X | G]] = E[E[X | G] | H] = E[X | H] = E[X], a.s.

Proof of part (viii). We prove it using the definition of conditional expecta-
tion, i.e. we verify that Y E[X | G] is a version of the conditional expectation
ofXY given G by checking the two conditions. The measurability part is easy.
Y E[X | G] is G-measurable since both Y and E[X | G] are G-measurable.

We also need to show
∫
A
Y E[X | G]dP =

∫
A
XY dP for any A ∈ G. We

start by assuming Y = 1B for some B ∈ G. Then,∫
A

Y E[X | G]dP =

∫
A

1BE[X | G]dP =

∫
A∩B

E[X | G]dP.

Since both A,B are in G, we have A ∩ B ∈ G and thus by the definition of
conditional expectation,∫

A∩B
E[X | G]dP =

∫
A∩B

XdP =

∫
A

1BXdP =

∫
A

XY dP.

It is straightforward to repeat the above calculations for simple functions.
Next, assume that both X, Y are non-negative and apply MCT (details omit-
ted here). Finally, by writing X = X+ − X− and Y = Y + − Y − (details
omitted again), we can prove the proposition for any integrable X, Y such
that XY is also integrable and Y ∈ G.

Proof of the remaining part(s). Try it yourself.

Proposition 9.2 (Conditional expectation and independence). Let X, Y, Z
be integrable random variables and G ⊂ F be a given sub-σ-algebra.

(i) If σ(X) and G are independent, then E[X | G] = E[X], a.s.

(ii) Suppose X, Y are independent, and ϕ is a Borel function such that
E|ϕ(X, Y )| < ∞. Define a function f by letting f(x) = E[ϕ(x, Y )] for
each x ∈ R. Then, E[ϕ(X, Y ) | X] = f(X), a.s.

(iii) If σ(X, Y ) is independent of σ(Z), E[Y | X,Z] = E[Y | X], a.s.

Proof of part (i). Try it yourself.
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Proof of part (ii). See Example 4.1.7 in Durrett [3] and part (12) in §10.3
of Resnick [6].

Sketch of proof of part (iii). Let W = E[Y | X]. We show that W is a
version of E[Y | X,Z] by verifying the two conditions. The measurability
part is easy. The second condition is that E[W1A] = E[Y 1A] for every A ∈
σ(X,Z). We begin by considering measurable rectangle set B1×B2 ∈ B(R2).
Using the independence assumption, one can show that

E[W1B1×B2(X,Z)] = E[Y 1B1×B2(X,Z)].

Define L = {B ∈ B(R2) : E[W1B(X,Z)] = E[Y 1B(X,Z)]}. Show that L is
a λ-system and use Dynkin’s theorem to conclude the proof.

Proposition 9.3 (Limits of conditional expectation). Let X and {Xn} be
integrable random variables and G ⊂ F be a given sub-σ-algebra.

(i) MCT: If 0 ≤ Xn ↑ X, then E[Xn | G] ↑ E[X | G], a.s.

(ii) DCT: If Xn → X and |Xn| ≤ Z for some integrable random variable
Z, then E[X | G] = limn→∞E[Xn | G], a.s.

Proof. See the textbook.

9.3 Conditional probability

Definition 9.2. Consider the probability space (Ω,F ,P), a sub-σ-field G ⊂
F , and a random variable X: (Ω,F) → (R,B(R)) such that E|X| < ∞. The
conditional probability P(X ∈ A | G) for any A ∈ B(R) is defined as

P(X ∈ A | G) = E[1{X∈A} | G].

Remark 9.4. By the above definition and Proposition 9.1 (iii), we have
P(X ∈ A | G) ∈ [0, 1] a.s. Further, P(X ∈ ∅ | G) = 0 and P(X ∈ Ω | G) = 1,
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a.s. Let A1, A2, . . . be a sequence of disjoint Borel sets. Then,

∞∑
n=1

P(X ∈ An | G) =
∞∑
n=1

E[1{X∈An} | G]

= lim
n→∞

n∑
i=1

E[1{X∈Ai} | G]

= lim
n→∞

E[1(X ∈ ∪n
i=1Ai) | G]

= E[1(X ∈ ∪∞
i=1Ai) | G]

= P(X ∈ ∪∞
n=1An | G),

almost surely. Note that the second last line follows from the MCT for
conditional expectation. It is tempting to jump to the conclusion that a.s.
P(X ∈ · | G) is a probability measure on (R,B(R)). But we cannot. For
any given sequence {An} of disjoint sets, the countable additivity may fail
to hold on a P-null set (i.e. a set with probability 0). Since there could
be uncountably many such sequences, the union of all these P-null sets may
have positive probability.

Theorem 9.2. Consider the setting of Definition 9.2. There always exists a
function p : Ω×B(R) → [0, 1], which is called a regular conditional distribu-
tion of X given G, such that

(i) for each A ∈ B(R), the function p(·, A) is a version of P(X ∈ A | G);

(ii) for P-almost every ω ∈ Ω, the function p(ω, ·) is a probability measure
on (R,B(R)).

Proof. See Durrett [3, §4.1.3].

Remark 9.5. A measurable function from (Ω,F ,P) to (Λ,G) is called a ran-
dom element. The above theorem is not true if X is a random element, and
there are explicit counterexamples where the regular conditional distribution
does not exist.

Proposition 9.4. Let Z = (X, Y ) : (Ω,F ,P) → (R2,B(R2)) be a random
vector with density fZ = d(P ◦ Z−1)/dm2. Define fY (y) =

∫
R fZ(x, y)m(dx)

and fX|Y (x, y) = fZ(x, y)/fY (y). Then,

p(ω,A) =

∫
A

fX|Y (x, Y (ω))m(dx), ∀ω ∈ Ω, A ∈ B(R).
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is the regular conditional distribution of X given σ(Y ). In other words, the
regular conditional distribution of X given Y = y has density fX|Y (·, y).

Proof. We check the two conditions. First, fix an arbitrary A ∈ B(R) and
consider the mapping ω 7→ p(ω,A). By Fubini’s theorem2 and composition
theorem (Proposition 3.4), this mapping is σ(Y )-measurable. To show that
ω 7→ p(ω,A) is a version of P(X ∈ A | Y ), it suffices to prove that for any
B ∈ B(R), we have∫

Y −1(B)

p(ω,A)P(dω) =

∫
Y −1(B)

1{X∈A}P(dω) = P(X ∈ A, Y ∈ B).

Observe that fY is the marginal density function of the random variable Y ;
that is, fY = d(P ◦ Y −1)/dm. So, the change-of-variable formula,∫

Y −1(B)

{∫
A

fX|Y (x, Y (ω))m(dx)

}
P(dω)

=

∫
B

{∫
A

fZ(x, y)

fY (y)
m(dx)

}
(P ◦ Y −1)(dy)

=

∫
B

1

fY (y)

{∫
A

fZ(x, y)m(dx)

}
(P ◦ Y −1)(dy)

=

∫
B

{∫
A

fZ(x, y)m(dx)

}
m(dy)

= P(Z ∈ A×B) = P(X ∈ A, Y ∈ B).

Second, the mapping A 7→ p(ω,A) is a probability measure on (R,B(R)) by
Theorem 5.6. This concludes the proof.
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