Lecture 9

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
10.2 and 10.3 of Resnick [6] and Chapter 4.1 of Durrett [3].

9.1 Conditional expectations

Definition 9.1. Consider a probability space (2, F,P), a sub-o-field G C F,
and a random variable X such that F|X| < co. The conditional expectation
of X given G, denoted by E[X | G], is a random variable such that

(i) E[X | G] is G-measurable;
(ii) for any A € G, we have [, XdP = [, E[X | G]dP

Any random variable that satisfies the above two properties is called a version
of E[X | G]. For two random variables X, Y defined on the same probability
space, we often write E[X | Y] = E[X | o(Y)].

Theorem 9.1. There exists a random variable that satisfies (i) and (ii) in
Definition |9.1. Further, such a random variable is essentially unique, which
means that any two versions of E[X | G] are equivalent almost surely.

Proof. Here we only give the proof for a non-negative and integrable random
variable X > 0.

(Existence.) It can be shown that (see also Theorem 5.6)

/XdP VAeg

defines a o-finite measure on (£2,G) (since v(2) < oo by the integrability
assumption). Let Pg be the restriction of P to G; that is, P|g is a measure
on (£2,G) and Pig(A) = P(A) for every A € G. Then, we have v < P|g and
by Radon-Nikodym theorem, the derivative dv/dPg is G-measurable and

XdP = v(A / 2 dPg, VAcG.
/A dPg 19
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Because P agrees with P|g on G, we have

AP AP,
/dP|g 19 /dPg

(This argument is not most rigorous. But one can prove it rigorously by
starting from simple functions and then considering general non-negative
functions.) So dv/dP|g is a version of E[X | G]. Its existence follows from
Radon-Nikodym theorem.

(Uniqueness.) By the uniqueness part of the Radon-Nikodym theorem, if
there exists any other random variable, say Z, that satisfies properties (i)
and (ii), it must be equal to dv/dP|g, P|g-a.e. But “Pg-a.e.” implies “P-
a.e.”, which concludes the proof. O

Example 9.1. Consider a six-faced fair die. The sample space is given by
Q= {1,2,3,4,5,6}. Let P be the uniform probability measure on (2, F),
where F = P(Q2), such that P({w}) = 1/6 for w = 1,2,...,6. Let X be a
random variable on (2, F) defined by X (w) = w. Consider a sub-o-algebra
G defined as

G =1{0,{1,2,3},{4,5,6},Q}.

Note that we can define a random variable Y (w) = 11,233 (w), which satisfies
o(Y) = G. The conditional expectation E[X | G] is given by

) if we {1,2,3},
E[X|Q](W)={ 5 if we {4,5,6}.

To verify this claim, we need to check the two conditions. The first one that
E[X | G] is G-measurable is obvious upon noticing that E[X | G] and Y
should generate the same o-algebra. To verify the second condition, we need
to check the equality holds for all the four sets in G. Here we only do it for
the set {1,2,3}:

/ XdP_ZX Pw}) == x (14+24+3) =1,
{1,2,3}

1 1 1
/{1,273} E[X | GldP = ;E[X [GlwP({w}h) =2x (c+z+ ) =1
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Example 9.2. Consider a probability space (€2, F,P). Let ©,€Qs,... be a
countable partition of the entire sample space Q (“partition” implies “dis-
joint”) such that P(€2;) > 0 for each i. Define a sub-o-algebra by

g:U(Ql,QQ,...).

Then, one can show that the conditional expectation of a random variable
X given G is

XdP
EX|Gw) =) fs;;(—gi)ngi(w), a.s.

i>1
Observe that equivalently this can be expressed as, almost surely,

E[X1g,] _
ElX = —= fweQ,.
X1 9w) = prg i
This justifies why in elementary probability, we use the following formula to
calculate the conditional expectation given any A € F,

E[X14]

B[ Al = =5

(In the above notation, E[X | A] is a real number, not a random variable.
We usually avoid using such notation in measure-theoretic probability.)

Remark 9.1. Let Y: (@, F) — (A, H). Consider a version of E[X | o(Y)],
which by definition is a mapping from €2 to R and should be ¢(Y")-measurable.
By Proposition 3.5, there exists a function h: (A, H) — (R, B(R)) such that
E[X | o(Y)](w)=(hoY)(w)=h(Y(w)). This justifies why in statistics, we
often use the notation E[X | Y = y|; it is defined as E[X | Y = y| = h(y).

Remark 9.2. Consider 1;xcay for a random variable X and A € B(R). Let
Y be another random variable with an absolutely continuous distribution.
From Remark 9.1 P(X € A |Y = y) == E[lyxeay | Y = y] = h(y) for some
measurable function h. Further, it can be shown thatll] for almost every y,

h(y) :lgglP(XeA\Ye (y — 9,y + 90]).

The right-hand side can be evaluated by using elementary formula for condi-
tional probabilities. This yields a natural interpretation of P(X € A | Y = y).

! This is quite non-trivial; see Probability and Measures by Billingsley.
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Example 9.3. Let X, Y be independent standard normal random variables,
and consider P(X € A | X =Y). In light of Remark [0.2] we may want to
interpret P(X € A | X =Y) as the limit of P(X € A | B,,) for some sequence
of events {B, },>1 that converges to {X = Y}. This will be problematic,
because the limit, even if it exists, largely depends on how we construct
the sequence {B,},>1. For example, we can let U = X —Y and BY =
{lU| < n7'}; we can also let V = X/Y and BY = {|V — 1| < n~'}. But
lim,, o P(X € A| BY) and lim,, ,., P(X € A | BY) are unequal in general.
(You can use the formula given in Proposition to verify that the regular
conditional distribution of X | U = 0 and X | V = 1 are actually different.)
This is not too surprising upon observing that o(U) # o(V). Whenever we
do conditioning, we should think about the o-algebra we are conditioning on.
The two random variables E[lixcay | 0(U)] and E[lixcay | o(V)] are very
different. A similar example is given by the Borel-Kolmogorov paradox.

9.2 Properties of conditional expectations

For all results below, assume the probability space (2, F, P) is given.

Proposition 9.1 (Basic properties of conditional expectation). Let X,Y be
integrable random variables and G C F be a given sub-o-algebra.

(i) Fora,b€ R, E[(aX +bY) | G| = aE[X | G] + bE[Y | G], a.s.
(ii) If X = c where c € R, then E[X | G] = ¢, a.s.
(iii) If X > Y, then E[X | G] > E[Y | G], a.s.
(iv) If X € G, then B[X | G] = X, a.s.
(v) EIX [{0,Q}] = B[X].
(vi) Law of total expectation: E[E[X | G]] = E[X].
(vii) Tower property: If H is another o-algebra such that H C G C F, then

E[EIX |G] | H] = E[E[X |H] |Gl = EIX [H], as.

(viii) Suppose E|XY| < oo andY € G. Then E[XY |G| =YE[X | G], a.s.
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Remark 9.3. By part (vi), E[E[X | Y]] = E[X] for any random variable
Y, which is the non-measure theoretic version of the law of total expectation.
Actually, part is just a special case of part (vil). Let H = {0, Q}. Then,
by part (v), E[E[X | G]] = E[E[X | G] | H] = E[X | H] = E[X], ass.

Proof of part (viil). We prove it using the definition of conditional expecta-
tion, i.e. we verify that Y E[X | G] is a version of the conditional expectation
of XY given G by checking the two conditions. The measurability part is easy.
Y E[X | G] is G-measurable since both Y and E[X | G] are G-measurable.

We also need to show [, YE[X | GldP = [, XYdP for any A € G. We
start by assuming Y = 1g for some B € G. Then,

/AYE[X|g]dP:/AILBE[X|g]dP:/AmBE[X|g]dP.

Since both A, B are in G, we have AN B € G and thus by the definition of
conditional expectation,

/ E[X | GldP = XdP:/ILBXdP:/XYdP.
ANB ANB A A

It is straightforward to repeat the above calculations for simple functions.
Next, assume that both X, Y are non-negative and apply MCT (details omit-
ted here). Finally, by writing X = X* — X~ and Y = Y™ — Y~ (details
omitted again), we can prove the proposition for any integrable X, Y such
that XY is also integrable and Y € G. O

Proof of the remaining part(s). Try it yourself. O]

Proposition 9.2 (Conditional expectation and independence). Let X,Y, Z
be integrable random variables and G C F be a given sub-o-algebra.

(1) If o(X) and G are independent, then E[X | G] = F[X], a.s.

(i1) Suppose X,Y are independent, and ¢ is a Borel function such that
E|o(X,Y)| < 0. Define a function f by letting f(x) = E[p(x,Y)] for
each x € R. Then, E[p(X,Y) | X] = f(X), a.s.

(11i) If o(X,Y) is independent of o(Z), E|Y | X, Z] = E[Y | X], a.s.

Proof of part . Try it yourself. O]
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Proof of part (i). See Example 4.1.7 in Durrett [3] and part (12) in §10.3
of Resnick [6]. O

Sketch of proof of part (ill). Let W = E[Y | X|. We show that W is a
version of E[Y | X, Z] by verifying the two conditions. The measurability
part is easy. The second condition is that E[W1,] = E[Y 14] for every A €
o(X,Z). We begin by considering measurable rectangle set By x By € B(R?).
Using the independence assumption, one can show that

E[WﬂBl x Ba (X7 Z)] = E[Y]lBl x By (Xv Z)]

Define £ = {B € B(R?): E[W1g(X,Z)] = E[Y1p(X, Z)]}. Show that L is
a A-system and use Dynkin’s theorem to conclude the proof. O]

Proposition 9.3 (Limits of conditional expectation). Let X and {X,} be
integrable random variables and G C F be a given sub-o-algebra.

(i) MCT: If 0 < X,, + X, then E[X, | G] + E[X | G], a.s.

(i) DCT: If X,, — X and |X,| < Z for some integrable random variable
Z, then E[X | G] = lim, . F[X, | G], a.s.

Proof. See the textbook. O

9.3 Conditional probability

Definition 9.2. Consider the probability space (2, F,P), a sub-o-field G C
F, and a random variable X: (2, F) — (R, B(R)) such that F|X| < co. The
conditional probability P(X € A | G) for any A € B(R) is defined as

P(X€A|G)=FE[lixecay |Gl

Remark 9.4. By the above definition and Proposition (iii), we have
P(X € A|G)€]0,1] a.s. Further, P(X €0 |G)=0and P(X € Q| G) =1,
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a.s. Let Ay, Ay, ... be a sequence of disjoint Borel sets. Then,

[e.e]

Y P(X €A, G)=> Ellixeay |9l
n=1 n=1

= lim ]
n—00 £—

= lim E[1(X € UL, 4;) | ]

= E[l(X € U2, 4) | G)
= P(X S UzozlAn ‘ g)a

almost surely. Note that the second last line follows from the MCT for
conditional expectation. It is tempting to jump to the conclusion that a.s.
P(X € - | G) is a probability measure on (R, B(R)). But we cannot. For
any given sequence {A,} of disjoint sets, the countable additivity may fail
to hold on a P-null set (i.e. a set with probability 0). Since there could
be uncountably many such sequences, the union of all these P-null sets may
have positive probability.

Theorem 9.2. Consider the setting of Definition[9.2. There always exists a
function p : Q@ x B(R) — [0, 1], which is called a regqular conditional distribu-
tion of X given G, such that

(1) for each A € B(R), the function p(-, A) is a version of P(X € A | G);
(1) for P-almost every w € Q, the function p(w,-) is a probability measure
on (R, B(R)).
Proof. See Durrett [3|, §4.1.3]. O
Remark 9.5. A measurable function from (€2, F, P) to (A, G) is called a ran-
dom element. The above theorem is not true if X is a random element, and

there are explicit counterexamples where the regular conditional distribution
does not exist.

Proposition 9.4. Let 7 = (X, Y) (Q,F,P) — (R? B(]RQ)) be a random
vector with density f; = d(P o Z7')/dm?. Define fy(y) = [; fz(x,y)m(dz)

and fx\y(x,y) = fz(x,y)/ fv(y). Then,

/ Ixpy (z, Y (w))m(dx), Vw e Q, A € B(R).
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is the regular conditional distribution of X given o(Y). In other words, the
reqular conditional distribution of X given'Y =1y has density fx)y(-,y).

Proof. We check the two conditions. First, fix an arbitrary A € B(R) and
consider the mapping w — p(w, A). By Fubini’s theoremﬂ and composition
theorem (Proposition 3.4), this mapping is o(Y)-measurable. To show that
w = p(w, A) is a version of P(X € A | Y), it suffices to prove that for any
B € B(R), we have

/ p(w, A)P(dw) = / LixeaP(dw) =P(X € A)Y € B).
Y=1(B) Y=1(B)

Observe that fy is the marginal density function of the random variable Y;
that is, fy = d(P oY1) /dm. So, the change-of-variable formula,

/ { / ey (.Y (@ (dx)} P(dw)

——L/'{ P80 o)} Py (a)

[ttt} 0oyt

]

=P(Ze€ AxB)=P(X €AY €B).

Second, the mapping A — p(w, A) is a probability measure on (R, B(R)) by
Theorem 5.6. This concludes the proof. O
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