Lecture 6

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
5.7 to 5.9 of Resnick [3] and Chapter 1.7 of Durrett [2].

6.1 Product spaces

Definition 6.1. Let (Qq, F1, i11), (22, F2, p2) be two measure spaces.
(i) Product space: Q1 x Q5 = {(wy,ws) : w; € Q0 =1,2.}.
(ii) Product o-algebra: F; x Fo = 0({A1 x As: Ay € Fi, Ay € Fa}).

(iii) Coordinate (or projection) maps: m;(wy,ws) = w; for i = 1,2. Note that
m; is a mapping from Q; x {25 to ;.

(iv) For A C £y x Qy, the section of A at w; is defined by
Aw1 = {CUQ . (WI,LUQ) € A} C QQ.
Similarly, we can define the section of A at w, /]

(v) For a real valued function f defined on ; x €, the section of f at w;
is defined by f,, (w2) = f(wi,w2). So f,, is a mapping from {2 to R.

(vi) If A; € Q; for i = 1,2, then we call A; x Ay a rectangle. Further, we
say it is measurable if A; € F; for i = 1, 2. Note that some authors use
“rectangles” to refer to “measurable rectangles”.

Example 6.1. When Q;, Q are countable and F; = P () for i = 1,2, we
have F1 X Fo = P(£; x Q2). Another special case is the Borel o-algebra on
R%. Tt can be shown that B(R?) = B(R) x B(R).

Example 6.2. Let Q2 = [0,1] and equip it with the o-algebra generated
by all one-point sets, which we denote by C. Consider the product space
(2 x Q,C x C). Define the diagonal set D = {(w,w) : w € Q}. Its sections
are clearly measurable with respect to C but it can be shown that D ¢ C x C.

! This notation for sections can be confusing. We will not use it in other lectures.



Fall 2022 Quan Zhou

Lemma 6.1. The collection of all measurable rectangles is a semi-algebra.
Proof. See page 144 of Resnick [3]. O
Proposition 6.1. Properties of sections.

(1) If A C Qy X Qq, then (A%),, = (A"

(i1) If for a set T, we have Ay C Qy X Qy for allt € T, then

(UAt>w1 U(At)WN (ﬂAt> =4

w1 t
(113) If f,q are functions defined on Qy X Qso, then (f + §)w, = fu, + Gu, -

(iv) Let f, be a sequence of functions defined on 4 X Qo such that f, — f.
Then; hmn%oo(fn)wl - fwl-

Proof. Try it yourself. m
Lemma 6.2. If a set A € F; X Fy, then for all wy € Qy, we have A, € F3.

Proof. Define C,, = {A C Q1 xQy: Ay, € Fo}. If Ais ameasurable rectangle,
we can write it as A = A; x Ay and thus

Ay eF,  ifw € Ay,
Aw1:{w2i(w1aw2)€A1XA2}:{ 2® : 1f251¢A1

Thus, all the measurable rectangles belong to C,,.
Next, we prove C,, is a A-system.

(1) Clearly ©; x Qy € C,, since 0 x )y is a measurable rectangle.
(2) If A €C,,, then A° € C,, since (A°),, = (A, )¢ by Proposition

(3) Consider a sequence of disjoint sets Ay, A,, ... such that A,, € C,, forn =
1,2,.... Since (A,)., € F2, we have U, (A, )., € Fo. By Proposition [6.1]
this further implies (U, A,).,, € F2 and thus U, A, € C,,.

By Lemma [6.1] the collection of all measurable rectangles is a m-system.
Hence, by Dynkin’s theorem, the o-algebra generated by this w-system is

contained in C,,; that is, F; X Fo C C,,. O
Corollary 6.1. Let f: () x Qq, F1 X F2) — (R, B(R)). Then f,, € F».
Proof. Try it yourself. ]
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6.2 Product measures

Theorem 6.1. Let (2, Fi, 1), (2, Fa, pi2) be two o-finite measure spaces.
Then there is a unique measure p on (21 X Qo, Fi X F3) such that

1(Ar x Ag) = 1 (A1) pa(As),
for any Ay x Ay € F1 X Fo. We write i = p1 X pg and call it product measure.
Proof. For any Ay X Ay € F1 X Fa, define pu( Ay X Ag) = 1 (Aq)p2(As). By the

extension theorems and Lemma|6.1] we only need to prove p is a pre-measure
(i.e. a o-additive function) on the collection of all measurable rectangles and
w is o-finite. The latter is easy: one can show that the o-finiteness of p; and
o implies that p is o-finite.

To prove p is o-additive for measurable rectangles, let {A, 1 X A, :
n = 1,2,...} be a collection of disjoint measurable rectangles such that
Un(Ap1 X Ap2) = Ap X Ag for some Ay € Fy, Ay € F,. We need to show that
(A x Ag) =507 (An 1 X Ap). By the definition of g,

p(Ay x Ag) = py(Ar) X pa(Az)

([ et}

=/ f2(Ag) L a, (wi) i (dews ).
941

The second line follows from the definition of the Lebesgue integral for simple
functions. Observe that

pa(A2) g, (w1) = Y pa(An2) 1, (@),

because A; x Aj is a measurable rectangle set and o, as a measure, is o-
additive for disjoint subsets of {25. Hence, by the monotone convergence
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theorem, we have

(A x Ay) = /Q (g uQ(An,Z)ﬂAnyl(wl)> pir (der)
- fj | o)t
- §u2<An,2> | T nm
S nf;mmn,l)m(fxn,g)

= ZM(An,l X An,Z)a
n=1

which completes the proof. O

Example 6.3. We can construct independent random variables (to be de-
fined in the next lecture) using product measure. Assume p, 1o are proba-
bility measures. Let X;: (2, Fi, ;) — (R, B(R)) and consider the product
space (€21 X o, F1 X Fo, pu1 X p2). Define

X7 (w1, wa) = Xy (wr), X5 (wi,w2) = Xo(wy).

They are both random variables on the product space. Now using the defi-
nition of rectangle sets and product measure, we can find that

i X pra({(wr,wa): Xy <1, X5 < 22})
= 1 ({wr: Xi(wi) < a1}) po({we: Xo(wz) < 22})
= p X po({(wr,wa) s XT < @i} X po({(wr, wa) s X5 < @}).

In the next lecture, we will see that this implies X7 and X are independent
under the measure p1 X fio.

6.3 Fubini’s theorem

Theorem 6.2 (Fubini’s theorem). Let (€, F1, p1), (2, Fo, p12) be two o-
finite measure spaces and let f: (1 X Qo, F1 X Fo) — (R, B(R)). Then if

4
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either f > 0 or f is integrable (with respect to py X ps), we have

/QIXQ2 fd(py X po) = /Ql ( N f(w1>w2)ﬂ2(dw2)) pir (der)
- /QZ ( o f(wbwz)#l(dwl)) pio(dws).

When f > 0, this result is also known as Tonelli’s theorem.
Proof. See the textbook. O

Example 6.4. Consider two measure spaces (2, = [0,1],B([0,1]),m) and
(Qy = [0,1],P([0,1]), #) where m denotes the Lebesgue measure and # is
the counting measure. On the product space we define a measurable function
f(wy,ws) = 1(w; = wq). However,

/Q1 ( o f(WhWQ)#(dWQ)) m(dw,) = /ﬂl (/92 ﬂ{wl}(WQ)#(dWQ)) m(dwr) = 1.
/92 ( Q f(wl’w2)m<dw1)> #(dw,) = /92 (/91 ﬂ{wz}(wl)m(dm)> #(dwsy) = 0.

Note that Fubini’s theorem cannot be applied since ([0, 1], P([0, 1]), #) is not
o-finite.
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