
Lecture 6

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
5.7 to 5.9 of Resnick [3] and Chapter 1.7 of Durrett [2].

6.1 Product spaces

Definition 6.1. Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two measure spaces.

(i) Product space: Ω1 × Ω2 = {(ω1, ω2) : ωi ∈ Ωi, i = 1, 2.}.

(ii) Product σ-algebra: F1 ×F2 = σ({A1 × A2 : A1 ∈ F1, A2 ∈ F2}).

(iii) Coordinate (or projection) maps: πi(ω1, ω2) = ωi for i = 1, 2. Note that
πi is a mapping from Ω1 × Ω2 to Ωi.

(iv) For A ⊂ Ω1 × Ω2, the section of A at ω1 is defined by

Aω1 = {ω2 : (ω1, ω2) ∈ A} ⊂ Ω2.

Similarly, we can define the section of A at ω2.
1

(v) For a real valued function f defined on Ω1 × Ω2, the section of f at ω1

is defined by fω1(ω2) = f(ω1, ω2). So fω1 is a mapping from Ω2 to R.

(vi) If Ai ⊂ Ωi for i = 1, 2, then we call A1 × A2 a rectangle. Further, we
say it is measurable if Ai ∈ Fi for i = 1, 2. Note that some authors use
“rectangles” to refer to “measurable rectangles”.

Example 6.1. When Ω1,Ω2 are countable and Fi = P(Ωi) for i = 1, 2, we
have F1 ×F2 = P(Ω1 × Ω2). Another special case is the Borel σ-algebra on
R2. It can be shown that B(R2) = B(R)× B(R).

Example 6.2. Let Ω = [0, 1] and equip it with the σ-algebra generated
by all one-point sets, which we denote by C. Consider the product space
(Ω × Ω, C × C). Define the diagonal set D = {(ω, ω) : ω ∈ Ω}. Its sections
are clearly measurable with respect to C but it can be shown that D /∈ C×C.

1This notation for sections can be confusing. We will not use it in other lectures.
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Lemma 6.1. The collection of all measurable rectangles is a semi-algebra.

Proof. See page 144 of Resnick [3].

Proposition 6.1. Properties of sections.

(i) If A ⊂ Ω1 × Ω2, then (Ac)ω1 = (Aω1)
c.

(ii) If for a set T , we have At ⊂ Ω1 × Ω2 for all t ∈ T , then(⋃
t

At

)
ω1

=
⋃
t

(At)ω1 ,

(⋂
t

At

)
ω1

=
⋂
t

(At)ω1 .

(iii) If f, g are functions defined on Ω1 × Ω2, then (f + g)ω1 = fω1 + gω1.

(iv) Let fn be a sequence of functions defined on Ω1 ×Ω2 such that fn → f .
Then, limn→∞(fn)ω1 = fω1.

Proof. Try it yourself.

Lemma 6.2. If a set A ∈ F1 ×F2, then for all ω1 ∈ Ω1, we have Aω1 ∈ F2.

Proof. Define Cω1 = {A ⊂ Ω1×Ω2 : Aω1 ∈ F2}. If A is a measurable rectangle,
we can write it as A = A1 × A2 and thus

Aω1 = {ω2 : (ω1, ω2) ∈ A1 × A2} =

{
A2 ∈ F2, if ω1 ∈ A1,

∅, if ω1 /∈ A1.

Thus, all the measurable rectangles belong to Cω1 .
Next, we prove Cω1 is a λ-system.

(1) Clearly Ω1 × Ω2 ∈ Cω1 since Ω1 × Ω2 is a measurable rectangle.

(2) If A ∈ Cω1 , then Ac ∈ Cω1 since (Ac)ω1 = (Aω1)
c by Proposition 6.1.

(3) Consider a sequence of disjoint sets A1, A2, . . . such that An ∈ Cω1 for n =
1, 2, . . . . Since (An)ω1 ∈ F2, we have ∪n(An)ω1 ∈ F2. By Proposition 6.1,
this further implies (∪nAn)ω1 ∈ F2 and thus ∪nAn ∈ Cω1 .

By Lemma 6.1, the collection of all measurable rectangles is a π-system.
Hence, by Dynkin’s theorem, the σ-algebra generated by this π-system is
contained in Cω1 ; that is, F1 ×F2 ⊂ Cω1 .

Corollary 6.1. Let f : (Ω1 × Ω2,F1 ×F2) → (R,B(R)). Then fω1 ∈ F2.

Proof. Try it yourself.
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6.2 Product measures

Theorem 6.1. Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two σ-finite measure spaces.
Then there is a unique measure µ on (Ω1 × Ω2, F1 ×F2) such that

µ(A1 × A2) = µ1(A1)µ2(A2),

for any A1×A2 ∈ F1×F2. We write µ = µ1×µ2 and call it product measure.

Proof. For any A1×A2 ∈ F1×F2, define µ(A1×A2) = µ1(A1)µ2(A2). By the
extension theorems and Lemma 6.1, we only need to prove µ is a pre-measure
(i.e. a σ-additive function) on the collection of all measurable rectangles and
µ is σ-finite. The latter is easy: one can show that the σ-finiteness of µ1 and
µ2 implies that µ is σ-finite.

To prove µ is σ-additive for measurable rectangles, let {An,1 × An,2 :
n = 1, 2, . . . } be a collection of disjoint measurable rectangles such that
∪n(An,1×An,2) = A1×A2 for some A1 ∈ F1, A2 ∈ F2. We need to show that
µ(A1 × A2) =

∑∞
n=1 µ(An,1 × An,2). By the definition of µ,

µ(A1 × A2) = µ1(A1)× µ2(A2)

=

(∫
Ω1

1A1dµ1

)
µ2(A2)

=

∫
Ω1

µ2(A2)1A1(ω1)µ1(dω1).

The second line follows from the definition of the Lebesgue integral for simple
functions. Observe that

µ2(A2)1A1(ω1) =
∞∑
n=1

µ2(An,2)1An,1(ω1),

because A1 × A2 is a measurable rectangle set and µ2, as a measure, is σ-
additive for disjoint subsets of Ω2. Hence, by the monotone convergence

3
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theorem, we have

µ(A1 × A2) =

∫
Ω1

(
∞∑
n=1

µ2(An,2)1An,1(ω1)

)
µ1(dω1)

=
∞∑
n=1

∫
Ω1

µ2(An,2)1An,1(ω1)µ1(dω1)

=
∞∑
n=1

µ2(An,2)

∫
Ω1

1An,1(ω1)µ1(dω1)

=
∞∑
n=1

µ1(An,1)µ2(An,2)

=
∞∑
n=1

µ(An,1 × An,2),

which completes the proof.

Example 6.3. We can construct independent random variables (to be de-
fined in the next lecture) using product measure. Assume µ1, µ2 are proba-
bility measures. Let Xi : (Ωi,Fi, µi) → (R,B(R)) and consider the product
space (Ω1 × Ω2,F1 ×F2, µ1 × µ2). Define

X∗
1 (ω1, ω2) = X1(ω1), X∗

2 (ω1, ω2) = X2(ω2).

They are both random variables on the product space. Now using the defi-
nition of rectangle sets and product measure, we can find that

µ1 × µ2({(ω1, ω2) : X
∗
1 ≤ x1, X

∗
2 ≤ x2})

= µ1({ω1 : X1(ω1) ≤ x1})µ2({ω2 : X2(ω2) ≤ x2})
= µ1 × µ2({(ω1, ω2) : X

∗
1 ≤ x1})µ1 × µ2({(ω1, ω2) : X

∗
2 ≤ x2}).

In the next lecture, we will see that this implies X∗
1 and X∗

2 are independent
under the measure µ1 × µ2.

6.3 Fubini’s theorem

Theorem 6.2 (Fubini’s theorem). Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two σ-
finite measure spaces and let f : (Ω1 × Ω2, F1 × F2) → (R̄,B(R̄)). Then if
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either f ≥ 0 or f is integrable (with respect to µ1 × µ2), we have∫
Ω1×Ω2

fd(µ1 × µ2) =

∫
Ω1

(∫
Ω2

f(ω1, ω2)µ2(dω2)

)
µ1(dω1)

=

∫
Ω2

(∫
Ω1

f(ω1, ω2)µ1(dω1)

)
µ2(dω2).

When f ≥ 0, this result is also known as Tonelli’s theorem.

Proof. See the textbook.

Example 6.4. Consider two measure spaces (Ω1 = [0, 1],B([0, 1]),m) and
(Ω2 = [0, 1],P([0, 1]),#) where m denotes the Lebesgue measure and # is
the counting measure. On the product space we define a measurable function
f(ω1, ω2) = 1(ω1 = ω2). However,∫
Ω1

(∫
Ω2

f(ω1, ω2)#(dω2)

)
m(dω1) =

∫
Ω1

(∫
Ω2

1{ω1}(ω2)#(dω2)

)
m(dω1) = 1.∫

Ω2

(∫
Ω1

f(ω1, ω2)m(dω1)

)
#(dω2) =

∫
Ω2

(∫
Ω1

1{ω2}(ω1)m(dω1)

)
#(dω2) = 0.

Note that Fubini’s theorem cannot be applied since ([0, 1],P([0, 1]),#) is not
σ-finite.
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