Lecture 6

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 5.7 to 5.9 of Resnick [3] and Chapter 1.7 of Durrett [2].

6.1 Product spaces

Definition 6.1. Let $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ be two measure spaces.

- (i) Product space: $\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \omega_i \in \Omega_i, i = 1, 2.\}.$
- (ii) Product σ -algebra: $\mathcal{F}_1 \times \mathcal{F}_2 = \sigma(\{A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}).$
- (iii) Coordinate (or projection) maps: $\pi_i(\omega_1, \omega_2) = \omega_i$ for i = 1, 2. Note that π_i is a mapping from $\Omega_1 \times \Omega_2$ to Ω_i .
- (iv) For $A \subset \Omega_1 \times \Omega_2$, the section of A at ω_1 is defined by

$$A_{\omega_1} = \{\omega_2 : (\omega_1, \omega_2) \in A\} \subset \Omega_2.$$

Similarly, we can define the section of A at ω_2 .¹

- (v) For a real valued function f defined on $\Omega_1 \times \Omega_2$, the section of f at ω_1 is defined by $f_{\omega_1}(\omega_2) = f(\omega_1, \omega_2)$. So f_{ω_1} is a mapping from Ω_2 to \mathbb{R} .
- (vi) If $A_i \subset \Omega_i$ for i = 1, 2, then we call $A_1 \times A_2$ a rectangle. Further, we say it is measurable if $A_i \in \mathcal{F}_i$ for i = 1, 2. Note that some authors use "rectangles" to refer to "measurable rectangles".

Example 6.1. When Ω_1, Ω_2 are countable and $\mathcal{F}_i = \mathcal{P}(\Omega_i)$ for i = 1, 2, we have $\mathcal{F}_1 \times \mathcal{F}_2 = \mathcal{P}(\Omega_1 \times \Omega_2)$. Another special case is the Borel σ -algebra on \mathbb{R}^2 . It can be shown that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$.

Example 6.2. Let $\Omega = [0,1]$ and equip it with the σ -algebra generated by all one-point sets, which we denote by \mathcal{C} . Consider the product space $(\Omega \times \Omega, \mathcal{C} \times \mathcal{C})$. Define the diagonal set $D = \{(\omega, \omega) : \omega \in \Omega\}$. Its sections are clearly measurable with respect to \mathcal{C} but it can be shown that $D \notin \mathcal{C} \times \mathcal{C}$.

¹This notation for sections can be confusing. We will not use it in other lectures.

Lemma 6.1. The collection of all measurable rectangles is a semi-algebra.

Proof. See page 144 of Resnick [3].

Proposition 6.1. Properties of sections.

- (i) If $A \subset \Omega_1 \times \Omega_2$, then $(A^c)_{\omega_1} = (A_{\omega_1})^c$.
- (ii) If for a set T, we have $A_t \subset \Omega_1 \times \Omega_2$ for all $t \in T$, then

$$\left(\bigcup_{t} A_{t}\right)_{\omega_{1}} = \bigcup_{t} (A_{t})_{\omega_{1}}, \quad \left(\bigcap_{t} A_{t}\right)_{\omega_{1}} = \bigcap_{t} (A_{t})_{\omega_{1}}.$$

- (iii) If f, g are functions defined on $\Omega_1 \times \Omega_2$, then $(f+g)_{\omega_1} = f_{\omega_1} + g_{\omega_1}$.
- (iv) Let f_n be a sequence of functions defined on $\Omega_1 \times \Omega_2$ such that $f_n \to f$. Then, $\lim_{n\to\infty} (f_n)_{\omega_1} = f_{\omega_1}$.

Proof. Try it yourself.

Lemma 6.2. If a set $A \in \mathcal{F}_1 \times \mathcal{F}_2$, then for all $\omega_1 \in \Omega_1$, we have $A_{\omega_1} \in \mathcal{F}_2$. Proof. Define $\mathcal{C}_{\omega_1} = \{A \subset \Omega_1 \times \Omega_2 : A_{\omega_1} \in \mathcal{F}_2\}$. If A is a measurable rectangle, we can write it as $A = A_1 \times A_2$ and thus

$$A_{\omega_1} = \{ \omega_2 : (\omega_1, \omega_2) \in A_1 \times A_2 \} = \begin{cases} A_2 \in \mathcal{F}_2, & \text{if } \omega_1 \in A_1, \\ \emptyset, & \text{if } \omega_1 \notin A_1. \end{cases}$$

Thus, all the measurable rectangles belong to C_{ω_1} . Next, we prove C_{ω_1} is a λ -system.

- (1) Clearly $\Omega_1 \times \Omega_2 \in \mathcal{C}_{\omega_1}$ since $\Omega_1 \times \Omega_2$ is a measurable rectangle.
- (2) If $A \in \mathcal{C}_{\omega_1}$, then $A^c \in \mathcal{C}_{\omega_1}$ since $(A^c)_{\omega_1} = (A_{\omega_1})^c$ by Proposition 6.1.
- (3) Consider a sequence of disjoint sets A_1, A_2, \ldots such that $A_n \in \mathcal{C}_{\omega_1}$ for $n = 1, 2, \ldots$. Since $(A_n)_{\omega_1} \in \mathcal{F}_2$, we have $\bigcup_n (A_n)_{\omega_1} \in \mathcal{F}_2$. By Proposition 6.1, this further implies $(\bigcup_n A_n)_{\omega_1} \in \mathcal{F}_2$ and thus $\bigcup_n A_n \in \mathcal{C}_{\omega_1}$.

By Lemma 6.1, the collection of all measurable rectangles is a π -system. Hence, by Dynkin's theorem, the σ -algebra generated by this π -system is contained in \mathcal{C}_{ω_1} ; that is, $\mathcal{F}_1 \times \mathcal{F}_2 \subset \mathcal{C}_{\omega_1}$.

Corollary 6.1. Let
$$f: (\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$
. Then $f_{\omega_1} \in \mathcal{F}_2$.

Proof. Try it yourself.

6.2 Product measures

Theorem 6.1. Let $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ be two σ -finite measure spaces. Then there is a unique measure μ on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ such that

$$\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2),$$

for any $A_1 \times A_2 \in \mathcal{F}_1 \times \mathcal{F}_2$. We write $\mu = \mu_1 \times \mu_2$ and call it product measure.

Proof. For any $A_1 \times A_2 \in \mathcal{F}_1 \times \mathcal{F}_2$, define $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$. By the extension theorems and Lemma 6.1, we only need to prove μ is a pre-measure (i.e. a σ -additive function) on the collection of all measurable rectangles and μ is σ -finite. The latter is easy: one can show that the σ -finiteness of μ_1 and μ_2 implies that μ is σ -finite.

To prove μ is σ -additive for measurable rectangles, let $\{A_{n,1} \times A_{n,2} : n = 1, 2, ...\}$ be a collection of disjoint measurable rectangles such that $\bigcup_n (A_{n,1} \times A_{n,2}) = A_1 \times A_2$ for some $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$. We need to show that $\mu(A_1 \times A_2) = \sum_{n=1}^{\infty} \mu(A_{n,1} \times A_{n,2})$. By the definition of μ ,

$$\mu(A_1 \times A_2) = \mu_1(A_1) \times \mu_2(A_2)$$

$$= \left(\int_{\Omega_1} \mathbb{1}_{A_1} d\mu_1 \right) \mu_2(A_2)$$

$$= \int_{\Omega_1} \mu_2(A_2) \mathbb{1}_{A_1}(\omega_1) \mu_1(d\omega_1).$$

The second line follows from the definition of the Lebesgue integral for simple functions. Observe that

$$\mu_2(A_2)\mathbb{1}_{A_1}(\omega_1) = \sum_{n=1}^{\infty} \mu_2(A_{n,2})\mathbb{1}_{A_{n,1}}(\omega_1),$$

because $A_1 \times A_2$ is a measurable rectangle set and μ_2 , as a measure, is σ -additive for disjoint subsets of Ω_2 . Hence, by the monotone convergence

theorem, we have

$$\mu(A_1 \times A_2) = \int_{\Omega_1} \left(\sum_{n=1}^{\infty} \mu_2(A_{n,2}) \mathbb{1}_{A_{n,1}}(\omega_1) \right) \mu_1(d\omega_1)$$

$$= \sum_{n=1}^{\infty} \int_{\Omega_1} \mu_2(A_{n,2}) \mathbb{1}_{A_{n,1}}(\omega_1) \mu_1(d\omega_1)$$

$$= \sum_{n=1}^{\infty} \mu_2(A_{n,2}) \int_{\Omega_1} \mathbb{1}_{A_{n,1}}(\omega_1) \mu_1(d\omega_1)$$

$$= \sum_{n=1}^{\infty} \mu_1(A_{n,1}) \mu_2(A_{n,2})$$

$$= \sum_{n=1}^{\infty} \mu(A_{n,1} \times A_{n,2}),$$

which completes the proof.

Example 6.3. We can construct independent random variables (to be defined in the next lecture) using product measure. Assume μ_1, μ_2 are probability measures. Let $X_i : (\Omega_i, \mathcal{F}_i, \mu_i) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and consider the product space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, \mu_1 \times \mu_2)$. Define

$$X_1^*(\omega_1, \omega_2) = X_1(\omega_1), \qquad X_2^*(\omega_1, \omega_2) = X_2(\omega_2).$$

They are both random variables on the product space. Now using the definition of rectangle sets and product measure, we can find that

$$\mu_1 \times \mu_2(\{(\omega_1, \omega_2) \colon X_1^* \le x_1, X_2^* \le x_2\})$$

$$= \mu_1(\{\omega_1 \colon X_1(\omega_1) \le x_1\}) \, \mu_2(\{\omega_2 \colon X_2(\omega_2) \le x_2\})$$

$$= \mu_1 \times \mu_2(\{(\omega_1, \omega_2) \colon X_1^* \le x_1\}) \, \mu_1 \times \mu_2(\{(\omega_1, \omega_2) \colon X_2^* \le x_2\}).$$

In the next lecture, we will see that this implies X_1^* and X_2^* are independent under the measure $\mu_1 \times \mu_2$.

6.3 Fubini's theorem

Theorem 6.2 (Fubini's theorem). Let $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ be two σ -finite measure spaces and let $f: (\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$. Then if

either $f \geq 0$ or f is integrable (with respect to $\mu_1 \times \mu_2$), we have

$$\int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(d\omega_2) \right) \mu_1(d\omega_1)
= \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) \mu_1(d\omega_1) \right) \mu_2(d\omega_2).$$

When $f \geq 0$, this result is also known as Tonelli's theorem.

Proof. See the textbook.

Example 6.4. Consider two measure spaces $(\Omega_1 = [0, 1], \mathcal{B}([0, 1]), m)$ and $(\Omega_2 = [0, 1], \mathcal{P}([0, 1]), \#)$ where m denotes the Lebesgue measure and # is the counting measure. On the product space we define a measurable function $f(\omega_1, \omega_2) = \mathbb{1}(\omega_1 = \omega_2)$. However,

$$\int_{\Omega_{1}} \left(\int_{\Omega_{2}} f(\omega_{1}, \omega_{2}) \#(d\omega_{2}) \right) m(d\omega_{1}) = \int_{\Omega_{1}} \left(\int_{\Omega_{2}} \mathbb{1}_{\{\omega_{1}\}}(\omega_{2}) \#(d\omega_{2}) \right) m(d\omega_{1}) = 1.$$

$$\int_{\Omega_{2}} \left(\int_{\Omega_{1}} f(\omega_{1}, \omega_{2}) m(d\omega_{1}) \right) \#(d\omega_{2}) = \int_{\Omega_{2}} \left(\int_{\Omega_{1}} \mathbb{1}_{\{\omega_{2}\}}(\omega_{1}) m(d\omega_{1}) \right) \#(d\omega_{2}) = 0.$$

Note that Fubini's theorem cannot be applied since $([0,1], \mathcal{P}([0,1]), \#)$ is not σ -finite.

References

- [1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
- [2] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.
- [3] Sidney Resnick. A Probability Path. Springer, 2019.