Lecture 3

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
3.1 and 3.2 of Resnick [3] and Chapter 1.3 of Durrett [2].

3.1 Inverse maps

Definition 3.1. Let 2, A be two sets and consider a function f: Q — A.
For A C A, the inverse image of A under f is

1A ={weQ: fw) e A}

Example 3.1. A simple function means a function with a finite range (finite
number of possible values). For a real-valued simple function (i.e. A = R), we

may denote the range by {ai,...,ax}, where a;’s are distinct real numbers.
Define A; = f~'({a;}). Then, {A;: i = 1,...,k} partitions Q. (“Partition”
means UY_;A; = Q and A;’s are disjoint.) Further, the function can be

expressed by [ = Zle a;ly,.

Proposition 3.1. f~! preserves complementation, unions and intersections;
that is, f~'(A°) = (f71(A), [T (UierAr) = Urer fH(Ar) and = (NierAy) =
Neerf 1 (Ar).

Proof. Try it yourself. O]
Lemma 3.1. Let G be a o-algebra on A. Then, f~4(G) = {f"'(A): A€ G}

is a o-algebra on ).

Proof. We only need to verify the three postulates. (i) Since A € G, we have
Q= f7HA) € f7HG). (i) If fH(A) € f71(G), sois (f71(A))° = f71(4°)
by Proposition 3.1 (iii) If f~'(A;) € f1(G) for i = 1,2,..., we have
Uif 1A = fF7HUA) € f71(G) since U;A; € G and f~! preserves unions
by Proposition [3.1] O

Remark 3.1. Sometimes we also use the notation o(f) = f~(G), and we
say that o(f) is the o-algebra generated by f. Of course, when o(f) is used,
it is assumed that G is clear from context; for example, when A = R, the
notation o(f) means f~'(B(R)).
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Theorem 3.1. If A C P(A) (i.e. A is a collection of subsets of A), then
[ o(A) =a(f7H(A)).

Proof. First, by Lemma[3.1] f~!(c(A)) is a o-algebra and thus f~'(o(A)) D
o(f~*(A)). Second, define C = {B C A : f~1(B) € o(f'(A))} and show
that C is also a o-algebra. Clearly, A C C and thus o(A) C C. It follows that
the other direction also holds, i.e. f~(c(A)) C o(f~*(A)), which concludes
the proof. O

3.2 Measurable functions and random variables

Definition 3.2. Let (€2, F) and (A, G) be two measurable spaces and f: Q@ —
A be a function. We say f is a measurable function if f~1(G) C F and we
write f: (Q,F) — (A,G). When Q and A are clear from text and we only
want to emphasize the o-algebra, we may write f € F/G.

If (A, G) = (R, B(R?)), we say f is Borel measurable or a Borel function
and often simply write f € F.

Definition 3.3. In probability theory, a real valued Borel function is called

a random variable for d = 1 and a random vector for d > 1 and is often
denoted by X,Y,....

Example 3.2. Consider a probability space (€2, F,P). Let X = 1,4 for some
A € F. Then X is a random variable and o(X) = {0,9, A, A°}.

Proposition 3.2 (Test for measurability). Consider measurable spaces (2, F),
(A, G) and function f: Q— A. If f~1(A) C F for some A that generates G,

then f is measurable.

Proof. Tt f~'(A) C F, we have o(f~'(A)) C F by the minimality of the
generated o-algebra. Then apply Theorem [3.1] [

Corollary 3.1. The real valued function X : Q0 — R is a random variable iff
X((—00,b]) € F for any b € R.

Proof. Try it yourself. m

Proposition 3.3. Let X be a random variable. If A generates B(R), then
o(X)=0c({X1(A): Aec A}).

Proof. Try it yourself. ]
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Proposition 3.4 (Composition). Let f : (21, B1) — (Q9,B2) and g : (22, By) —
(Qs3, B3) where (82, B;) (i = 1,2,3) are measurable spaces. Define the com-
position go f + Q1 — Q3 by go f(w) = g(f(w1)) for wi € Qy. Then
gof€Bi/B;.

Proof. Try it yourself. m

Proposition 3.5 (Converse to Proposition [3.4). Let f : (4, B1) — (Q, Bo)
and h : Q — R. Then, h € o(f)/B(R) if and only if there exists some
g:(Q,B) = (R,B(R)) such that h =go f.

Proof. Try it yourself after Lecture 4. ]
Proposition 3.6. Let f : R™ — R? be a continuous function. Then f €
B(R™)/B(R?).

Proof. 1t follows from the definition of Borel o-algebra and the fact that
f7Y(A) is open if A C R?is open and f is continuous. ]
Lemma 3.2. X = (Xi,...,X,,) is a random vector iff X; is a random

variable for every i.

Proof. The proof relies on the fact that B(IR") is generated by the collection
of all the rectangles in R™. See Durrett [2, Theorem 1.3.5]. O

Theorem 3.2. If Xy,..., X, are random variables and f : (R", B(R")) —
(R, B(R)), then f(Xi,...,X,) is a random variable and X = (Xi,...,X,)

1s a random vector.

Proof. By Proposition [3.4] if (Xj,...,X,,) is a measurable function which
maps from (2, F) to (R", B(R")), then f(Xj,...,X,) is a random variable.

In other words, we need to show (Xj,...,X,) is a random vector. But this
follows from Lemma [3.21 O
Theorem 3.3. If X1, X,,..., are random variables, then int, X,,, sup, X,,

liminf, X,,, lim sup,, X,, are measurable. Note that they take value in the
measurable space (R, B(R)).

Proof. Observe that {inf, X,, < 2} = U, {X,, < z} and {sup, X,, > z} =
Un{X, > x}. Then use the property that a o-algebra is closed under count-
able unions/intersections. O
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Proposition 3.7. Let (2, F, 1) be a measure space, (A, G) be a measurable
space and f : (Q, F) — (A, G). Define a function on G, denoted by o f=*
(or f4i1), a5 (10 F)(A) = u(f(A)) for any A € G Then o f~ is o

measure on (A, G). It is called the push-forward measure of i or the measure
induced by f.

Proof. Try it yourself. O

Definition 3.4. For a probability space (§2, F,P) and a random variable X
defined on it, P o X! is called the distribution or the law of X.

Example 3.3. Consider tossing two dice, which corresponds to the sample
space 0 = {(i,7) : 1 <4,57 <6}. Let A ={2,3,...,12}. Define X: Q —
A by X((i,7)) = i+ j. Then X~1({2,3}) = {(1,1),(1,2),(2,1)}. The
distribution of X is given by the push-forward measure P o X! where P
denotes the probability measure on Q. Hence, P o X~1({2,3}) = 3/36.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpub-
lished.

2] Rick Durrett. Probability: Theory and Ezamples, volume 49. Cambridge
university press, 2019.

[3] Sidney Resnick. A Probability Path. Springer, 2019.



	Inverse maps
	Measurable functions and random variables

