
Lecture 2

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
2.1, 2.2 and 2.4 of Resnick [3] and Chapter 1.1 and Appendix A of Durrett
[2].

2.1 Measures and measure spaces

Definition 2.1. Given a measurable space (Ω,F), a function µ : F → [0,∞]
is a measure if

◦ µ(A) ≥ 0 for any A ∈ F ;

◦ µ(∅) = 0;

◦ if {A1, A2, . . . } is a countable sequence of disjoint sets in F , then
µ(∪iAi) =

∑
i µ(Ai). This is called countable additivity (or σ-additivity).

(Ω,F , µ) is called a measure space, and sets in F are called measurable sets.
If µ(Ω) = 1, we call µ a probability measure and (Ω,F , µ) a probability space
(or a probability triple).

Remark 2.1. For convenience, we will often deal with the extended real line
R̄ = R∪{−∞,∞}. The arithemetic operations involving ±∞ are defined as
follows: (1) a±∞ = ±∞ for any a ∈ R; (2) ∞+∞ = ∞; (3) a ·∞ = ∞ for
any a ∈ (0,∞); (4) ∞ ·∞ = ∞. Note that ∞−∞, 0 · ∞ and ∞/∞ are not
defined. In measure theory, it is usually fine to assume that 0 · ∞ = 0 but a
rigorous proof is always preferred.1

Example 2.1. The following examples are important for probability theory.

(i) Let Ω be a discrete sample space (finite or countably infinite). The
counting measure on (Ω,P(Ω)) is denoted by #. For any A ∈ P(Ω),
#(A) is equal to the number of elements in A.

1An example we will see later is the Lebesgue integral
∫
A
f dµ with µ(A) = 0 and f ∈

[0,∞]. One can use the definition of Lebesgue integrals to rigorous prove that
∫
A
f dµ = 0.

This justifies a seemingly simpler argument:
∫
A
f dµ ≤ µ(A) sup f = 0 · ∞ = 0, which is

not rigorous in the last step.
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(ii) The Lebesgue measure on (R,B(R)), denoted bym, is given bym((a, b)) =
b− a for any −∞ < a ≤ b < ∞ [3, §2.5.1].

(iii) Unit point mass measures (Dirac measures): Given a measurable space
(Ω,F) and some x ∈ Ω, we can define the Dirac measure at x by
δx(A) = 1A(x) for any A ∈ F .

(iv) An arbitrary discrete probability measure: Assume Ω = {ω1, ω2, . . . }
and let {pi ≥ 0}∞i=1 be a sequence of non-negative real numbers such
that

∑
pi = 1. Then we can define a probability measure P by letting

P({ωi}) = pi and P(A) =
∑

ωi∈A pi for any A ∈ P(Ω). One can check
this is a probability measure on (Ω,P(Ω)).

2.2 Properties of measures

Proposition 2.1. Let (Ω,F , µ) be a measure space. Assume that the sets
we mention below are all in F .

(i) Monotonicity: If A ⊂ B, then µ(A) ≤ µ(B).

(ii) Subadditivity: If A ⊂ ∪iAi, then µ(A) ≤
∑

i µ(Ai).

(iii) Continuity from below: If Ai ↑ A, then µ(Ai) ↑ µ(A).

(iv) Continuity from above: If Ai ↓ A and µ(A1) < ∞, then µ(Ai) ↓ µ(A).

(v) Inclusion-exclusion formula: If µ(Ai) < ∞ for i = 1, 2, . . . , n, then

µ

(
n⋃

i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

I⊂{1,2,...,n}: #(I)=k

µ

(⋂
i∈I

Ai

) .

(vi) If µ(∪nAn) < ∞, then

µ(lim inf
n→∞

An) ≤ lim inf
n→∞

µ(An) ≤ lim sup
n→∞

µ(An) ≤ µ(lim sup
n→∞

An).

Further, if An → A, then µ(An) → µ(A).

Proof of part (iii). Let {An} be an increasing sequence, i.e. A1 ⊂ A2 ⊂ · · · .
Define another sequence of sets {Bn} by letting B1 = A1 and Bn = An∩Ac

n−1

(this can also be written as Bn = An \An−1.) Note that ∪n
i=1Bn = An, which

2
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implies that ∪∞
n=1Bn = limn→∞ An = A. Further, {Bn} is a disjoint sequence

and thus by the σ-additivity of measures,

µ(A) = µ(∪n≥1Bn) =
∑
n≥1

µ(Bn) = lim
n→∞

n∑
i=1

µ(Bi).

The last step follows from the monotone convergence theorem for sequences
of real numbers, and note that the limit can be infinity. The rest follows by
observing that

∑n
i=1 µ(Bi) = µ(∪n

i=1Bi) = µ(An).

Proof of part (vi). For a sequence of sets {An}, define Bn = supk≥nAk and
Cn = infk≥nAk. Note that both {Bn} and {Cn} are monotone sequences and
by Proposition 1.3, we have lim infn→∞ An = limn→∞ Cn and lim supn→∞ An =
limn→∞Bn. Assuming µ(B1) = µ(∪n≥1An) < ∞, by (i) and (iv),

µ(lim sup
n→∞

An) = lim
n→∞

µ(Bn) = lim sup
n→∞

µ(Bn) ≥ lim sup
n→∞

µ(An).

Similarly, µ(lim infn→∞An) = limn→∞ µ(Cn) ≤ lim infn→∞ µ(An) by (i) and
(iii). The first claim then follows since lim inf (of a real sequence) cannot be
greater than lim sup.

If we further assume that An → A, which by definition means that A =
lim supn→∞ An = lim infn→∞ An, then

µ(A) ≤ lim inf
n→∞

µ(An) ≤ lim sup
n→∞

µ(An) ≤ µ(A).

Hence, lim supn→∞ µ(An) = lim infn→∞ µ(An) and µ(An) → µ(A).

Proof of the remaining part(s). Try it yourself.

Example 2.2. The inclusion-exclusion formula can be proved by using Venn
diagram. The simplest case is given by µ(A∪B) = µ(A)+µ(B)−µ(A∩B).

Example 2.3. Let m be the Lebesgue measure on (R,B(R)). Let An =
[n,∞). Then, m(An) = ∞ for every n, but m(limn→∞ An) = m(∅) = 0.

2.3 Dynkin’s π-λ theorem

Definition 2.2. Let P ,L be two collections of subsets of Ω.

◦ P is called a π-system if it is closed under finite intersections.
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◦ L is called a λ-system if (i) ∅ ∈ L; (ii) L is closed under complementa-
tion; (iii) L is closed under countable disjoint unions.

Lemma 2.1. If a λ-system is closed under finite intersections (i.e. it is also
a π-system), then it is a σ-algebra.

Proof. Try it yourself.

Theorem 2.1 (Dynkin’s π–λ theorem). If P is a π-system and L is a λ-
system and P ⊂ L, then σ(P) ⊂ L.

Proof. Let λ(P) denote the minimal λ-system generated by P , which always
exists and is unique.

Step (1). For A ∈ λ(P), define GA = {B : A ∩ B ∈ λ(P)}. We claim GA is a
λ-system.

First, since A ∩ Ω = A ∈ λ(P), we have Ω ∈ GA.

Second, suppose B ∈ GA which means A∩B ∈ λ(P) by the defini-
tion of GA. Note that A∩Bc = (Ac ∪B)c = (Ac ∪ (A∩B))c. Since
both Ac and A∩B are in λ(P) and they are disjoint, Ac ∪ (A∩B)
and its complement are also in λ(P). Thus, Bc ∈ GA.

Third, if B1, . . . , Bn are disjoint sets in GA, then A ∩ (∪n
i=1Bi) =

∪n
i=1(A∩Bi) is a countable disjoint union of sets in λ(P), which is

also in λ(P). Therefore, ∪n
i=1Bi ∈ GA.

Step (2). Next, we prove λ(P) is a σ-algebra. By Lemma 2.1, it suffices to
show that λ(P) is closed under finite intersections; that is, for any
A,B ∈ λ(P), we have A ∩B ∈ λ(P).

For any A,B ∈ P , A ∩B ∈ P ⊂ λ(P) since P is a π-system.

This implies that for any A ∈ P , we have P ⊂ GA. Because λ(P)
is the minimal λ-system over P , we have λ(P) ⊂ GA. It follows
from the definition of GA that for any A ∈ P and B ∈ λ(P),
A ∩B ∈ λ(P).

Interchanging the roles of A and B in the previous conclusion, we
obtain that for any A ∈ λ(P) and B ∈ P , A∩B ∈ λ(P). But this
just means P ⊂ GA. Hence, λ(P) ⊂ GA for any A ∈ λ(P), which
implies that λ(P) is a π-system.
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Step (3). By definition, σ(P) ⊂ λ(P) and λ(P) ⊂ L. Thus, σ(P) ⊂ L.

The proof is complete.

Corollary 2.1. If P is a π-system, then σ(P) = λ(P), where λ(P) denotes
the minimal λ-system that contains P.

Proof. Try it yourself.

Theorem 2.2. Let P1, P2 be two probability measures on (R,B(R)) such that
for any x ∈ R, we have P1((−∞, x]) = P2((−∞, x]). Then P1 = P2 on B(R).

Proof. This is a very deep result. It tells us the distribution function (which
will be defined shortly) uniquely defines a probability measure on (R,B(R)).
We prove the result using Dynkin’s theorem.

Step (1). Let P = {(−∞, x] : x ∈ R}. Then P is a π-system since (−∞, a]∩
(−∞, b] = (−∞, a ∧ b].

Step (2). Consider the collection of sets L = {A ∈ B(R) : P1(A) = P2(A)}.
Using the properties of probability measures, it is easy to verify
that L is a λ-system.

Step (3). Notice that P ⊂ L and thus σ(P) ⊂ L. Recalling that σ(P) =
B(R), we conclude that L ⊃ B(R), i.e. P1 and P2 agree on B(R).

The proof is complete.

2.4 Distribution functions

Definition 2.3. A function F : R → [0, 1] is called a distribution function if

◦ F is right continuous, i.e. limxn↓x F (xn) = F (x) for every x;

◦ F is non-decreasing;

◦ limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

Definition 2.4. Quantile functions.

(i) Lower quantile function: F−(α) = inf{x : F (x) ≥ α}.

(ii) Upper quantile function: F+(α) = sup{x : F (x) ≤ α}.

Example 2.4. A uniform distribution on (0, 1) has distribution function
F (x) = x1(0,1)(x) + 1[1,∞)(x) (note that F is defined on R).
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2.5 Construction of uncountable measure spaces

Definition 2.5. A measure space (Ω,F , µ) is called σ-finite if there exists
a sequence of sets A1, A2, . . . in F such that µ(Ai) < ∞ for each i and
Ω = ∪∞

i=1Ai.

Example 2.5. Examples of σ-finite and non-σ-finite measures.

(i) The Lebesgue measure on the real line and the counting measure defined
on some countable space are σ-finite.

(ii) Consider a measure space (Ω,F , µ) such that µ(Ω) > 0. Define another
measure ν by

ν(A) =

{
0, if µ(A) = 0,
∞, if µ(A) > 0,

for any A ∈ F . One can show that ν is not σ-finite.

Definition 2.6. An algebra (field) on Ω is a collection of subsets of Ω which
contains Ω and is closed under complementation and finite unions.

Definition 2.7. A semi-algebra S on Ω is a collection of subsets of Ω such
that (i) ∅,Ω ∈ S; (ii) S is closed under finite intersections; (iii) if A ∈ S,
then Ac is a finite disjoint union of sets in S.
Theorem 2.3. Let S be a semi-algebra and µ : S → [0,∞] be a σ-additive
(countably additive) function such that µ(∅) = 0. Then µ has a unique
extension which is a measure on the algebra generated by S.
Proof. See the textbook.

Theorem 2.4 (Caratheodory’s extension theorem). A σ-finite measure µ on
an algebra A has a unique extension which is a measure on σ(A).

Proof. See the textbook.

Example 2.6. Consider the sample space Rd and let Sd be the collection of
all rectangles in Rd including ∅, i.e.

Sd = {(a1, b1]× · · · (ad, bd] : −∞ ≤ ai ≤ bi < ∞}.
It can be shown that Sd is a semi-algebra on Rd. When d = 1, we can
choose an arbitrary distribution function and define P : S1 → [0, 1] by letting
P((a, b]) = F (b) − F (a). Then, P has a unique extension P̄ on (R,B(R))
and P̄ is a probability measure. Indeed, for any set A ∈ B(R), we have
P̄(A) = m(ξF (A)) where m denotes the Lebesgue measure and ξF (A) = {x ∈
(0, 1] : F−(x) ∈ A}.
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