Lecture 2

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
2.1, 2.2 and 2.4 of Resnick [3] and Chapter 1.1 and Appendix A of Durrett

[2].

2.1 Measures and measure spaces

Definition 2.1. Given a measurable space (2, F), a function p : F — [0, 0]
is a measure if

o u(A) >0 for any A € F;
o u(0) = 0;

o if {A;, As,...} is a countable sequence of disjoint sets in F, then
(U A;) = >, u(A;). This is called countable additivity (or o-additivity).

(Q, F, p) is called a measure space, and sets in F are called measurable sets.
If u(Q) = 1, we call 1 a probability measure and (2, F, i) a probability space
(or a probability triple).

Remark 2.1. For convenience, we will often deal with the extended real line
R = RU{—00,00}. The arithemetic operations involving +o0o are defined as
follows: (1) a+ o0 = £oo for any a € R; (2) oo+ 00 = o0; (3) a- 00 = oo for
any a € (0,00); (4) 0o+ 0o = co. Note that co — 0o, 000 and co/oo are not
defined. In measure theory, it is usually fine to assume that 0-oco = 0 but a
rigorous proof is always preferred ]

Example 2.1. The following examples are important for probability theory.

(i) Let Q be a discrete sample space (finite or countably infinite). The
counting measure on (€2, P(2)) is denoted by #. For any A € P(),
#(A) is equal to the number of elements in A.

! An example we will see later is the Lebesgue integral fA fdu with u(A) =0and f €
[0,0¢]. One can use the definition of Lebesgue integrals to rigorous prove that [, fdu = 0.
This justifies a seemingly simpler argument: fA fdu < p(A)sup f =000 = 0, which is
not rigorous in the last step.
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(ii) The Lebesgue measure on (R, B(R)), denoted by m, is given by m((a,b)) =
b—a for any —oo < a <b< oo [3, §2.5.1].

(iii) Unit point mass measures (Dirac measures): Given a measurable space
(Q,F) and some = € (), we can define the Dirac measure at x by
0z(A) = 14(z) for any A € F.

(iv) An arbitrary discrete probability measure: Assume Q = {wi,ws, ...}
and let {p; > 0}2, be a sequence of non-negative real numbers such
that > p; = 1. Then we can define a probability measure P by letting
P({wi}) = pi and P(A) = > .4 pi for any A € P(£2). One can check
this is a probability measure on (£, P(f2)).

2.2 Properties of measures

Proposition 2.1. Let (2, F, ) be a measure space. Assume that the sets
we mention below are all in F.

(i) Monotonicity: If A C B, then pu(A) < u(B).
(i) Subadditivity: If A C U;A;, then p(A) <>, p(A;).
(111) Continuity from below: If A; T A, then u(A;) 1 pu(A).
(iv) Continuity from above: If A; | A and u(A;) < oo, then pu(A;) 4 u(A).

(v) Inclusion-exclusion formula: If u(A;) < oo fori=1,2,...,n, then
u (U Ai) =y S (=pH! > u (ﬂ Ai)
i=1 k=1 IC{1,2,..n}: #(D)=k  \i€l

(vi) If p(U,A,) < oo, then

p(liminf A,) <liminf u(A,) < limsup u(A,) < p(limsup 4,,).

n—00 n—00 n—00 n—00
Further, if A, — A, then u(A,) — u(A).

Proof of part (). Let {A,} be an increasing sequence, i.e. A; C Ay C -+,
Define another sequence of sets { B, } by letting B; = A; and B,, = A,NAS_,
(this can also be written as B,, = A, \ A,_1.) Note that U , B,, = A, which
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implies that US® | B,, = lim,, o 4, = A. Further, {B,} is a disjoint sequence
and thus by the o-additivity of measures,

#(A) = (Un1B,) = Y~ pu(B,) = lim ZIM(B

n>1

The last step follows from the monotone convergence theorem for sequences
of real numbers, and note that the limit can be infinity. The rest follows by
observing that Y | u(B;) = p(UP, B;) = pu(Ay). O

Proof of part . For a sequence of sets {4, }, define B,, = sup,~,, A and
C,, = infy>, Ax. Note that both {B,} and {C,,} are monotone sequences and
by Proposition , we have lim inf,, , . 4, = lim, o, C,, and limsup,, , . A, =
limy, 00 By. Assuming p(By) = u(Up>14,) < 0o, by (i) and (iv),

p(limsup A,) = lim p(B,) = limsup u(B,,) > limsup pu(A,).

n—o00 n—oo n—o00 n—o00

Similarly, p(liminf, . A,) = lim, o x(Cy) < liminf, . u(A,) by (i) and
(iii). The first claim then follows since liminf (of a real sequence) cannot be
greater than lim sup.

If we further assume that A, — A, which by definition means that A =
limsup,, ,,, A, = liminf, . A,, then

pu(A) <liminf u(A,) < limsup p(A4,) < p(A).

n—00 n—00
Hence, lim sup,, .. p(A,) = liminf, . u(A,) and u(A,) — p(A). O
Proof of the remaining part(s). Try it yourself. O

Example 2.2. The inclusion-exclusion formula can be proved by using Venn
diagram. The simplest case is given by u(AUB) = u(A)+ u(B) — u(ANB).

Example 2.3. Let m be the Lebesgue measure on (R, B(R)). Let A, =
[n,00). Then, m(A,) = oo for every n, but m(lim, . 4,) = m(0) = 0.

2.3 Dynkin’s -\ theorem
Definition 2.2. Let P, L be two collections of subsets of €.

o P is called a m-system if it is closed under finite intersections.
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o L is called a A-system if (i) ) € £; (ii) £ is closed under complementa-
tion; (iii) £ is closed under countable disjoint unions.

Lemma 2.1. If a A-system is closed under finite intersections (i.e. it is also
a w-system), then it is a o-algebra.

Proof. Try it yourself. O]

Theorem 2.1 (Dynkin’s 7—A theorem). If P is a w-system and L is a \-
system and P C L, then o(P) C L.

Proof. Let A(P) denote the minimal A-system generated by P, which always
exists and is unique.

Step (1). For A € A\(P), define G4 = {B: AN B € \(P)}. We claim G4 is a
A-system.

First, since ANQ = A € A\(P), we have Q € G4.

Second, suppose B € G4 which means AN B € A(P) by the defini-
tion of G4. Note that AN B¢ = (A°UB)¢ = (A°U (AN B)). Since
both A¢ and AN B are in A(P) and they are disjoint, A°U (AN B)
and its complement are also in A(P). Thus, B¢ € G4.

Third, if By,..., B, are disjoint sets in G4, then AN (U, B;) =
U, (AN B;) is a countable disjoint union of sets in A(P), which is
also in A\(P). Therefore, U} B; € G4.

Step (2). Next, we prove A(P) is a o-algebra. By Lemma [2.1] it suffices to
show that A\(P) is closed under finite intersections; that is, for any
A, B € \(P), we have AN B € \(P).

For any A, B € P, ANB € P C A(P) since P is a m-system.

This implies that for any A € P, we have P C G4. Because A\(P)
is the minimal A-system over P, we have A(P) C G4. It follows
from the definition of G4 that for any A € P and B € A(P),
ANB e \(P).

Interchanging the roles of A and B in the previous conclusion, we
obtain that for any A € A(P) and B € P, AN B € A(P). But this
just means P C G4. Hence, A(P) C G4 for any A € A(P), which
implies that A(P) is a 7-system.
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Step (3). By definition, o(P) C A(P) and A\(P) C L. Thus, o(P) C L.
The proof is complete. O
Corollary 2.1. If P is a w-system, then o(P) = A(P), where A\(P) denotes

the minimal \-system that contains P.
Proof. Try it yourself. m

Theorem 2.2. Let Py, Py be two probability measures on (R, B(R)) such that
for any x € R, we have P1((—o0, z]) = Py((—00,z]). Then Py = Py on B(R).

Proof. This is a very deep result. It tells us the distribution function (which
will be defined shortly) uniquely defines a probability measure on (R, B(R)).
We prove the result using Dynkin’s theorem.

Step (1). Let P = {(—o0,z] : € R}. Then P is a m-system since (—oo, a]N
(—o0,b] = (—o0,a A D).

Step (2). Consider the collection of sets £ = {A € B(R) : P1(A) = P2(A)}.
Using the properties of probability measures, it is easy to verify
that £ is a A-system.

Step (3). Notice that P C £ and thus o(P) C L. Recalling that o(P) =
B(R), we conclude that £ D B(R), i.e. P; and Py agree on B(R).

The proof is complete. O

2.4 Distribution functions
Definition 2.3. A function F': R — [0, 1] is called a distribution function if
o F'is right continuous, i.e. lim,, |, F'(z,) = F(x) for every x;
o F'is non-decreasing;
o lim, ,o, F'(z) =1 and lim,_, -, F(z) = 0.
Definition 2.4. Quantile functions.
(i) Lower quantile function: F'~(a) = inf{x : F(x) > a}.
(ii) Upper quantile function: F*(«) =sup{z: F(z) < a}.
Example 2.4. A uniform distribution on (0,1) has distribution function

F(x) = 2101)(2) + Lp,ec) () (note that F' is defined on R).
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2.5 Construction of uncountable measure spaces

Definition 2.5. A measure space (€, F, u) is called o-finite if there exists
a sequence of sets Aj, As,... in F such that p(A;) < oo for each ¢ and
Example 2.5. Examples of o-finite and non-o-finite measures.

(i) The Lebesgue measure on the real line and the counting measure defined
on some countable space are o-finite.

(ii) Consider a measure space (€2, F, 1) such that p(£2) > 0. Define another
measure v by

0,  if p(A) =0,
v(4) = { 0o, if Z(A) >0,

for any A € F. One can show that v is not o-finite.

Definition 2.6. An algebra (field) on 2 is a collection of subsets of 2 which
contains €2 and is closed under complementation and finite unions.

Definition 2.7. A semi-algebra S on €2 is a collection of subsets of €2 such
that (i) 0,Q € S; (ii) S is closed under finite intersections; (iii) if A € S,
then A€ is a finite disjoint union of sets in S.

Theorem 2.3. Let S be a semi-algebra and p: S — [0, 00| be a o-additive

(countably additive) function such that u(@) = 0. Then p has a unique
extension which is a measure on the algebra generated by S.

Proof. See the textbook. m

Theorem 2.4 (Caratheodory’s extension theorem). A o-finite measure p on
an algebra A has a unique extension which is a measure on o(A).

Proof. See the textbook. O]

Example 2.6. Consider the sample space R? and let S; be the collection of
all rectangles in R including 0, i.e.

Sa = {(ay,b1] x -+ (aq,bq) : —00 < a; < b; < o0}

It can be shown that S; is a semi-algebra on R?. When d = 1, we can
choose an arbitrary distribution function and define P: S; — [0, 1] by letting
P((a,b]) = F(b) — F(a). Then, P has a unique extension P on (R, B(R))
and P is a probability measure. Indeed, for any set A € B(R), we have
P(A) = m(£r(A)) where m denotes the Lebesgue measure and £x(A) = {z €
(0,1] : F~(z) € A}.
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