Lecture 2 ### Instructor: Quan Zhou For more details about the materials covered in this note, see Chapters 2.1, 2.2 and 2.4 of Resnick [3] and Chapter 1.1 and Appendix A of Durrett [2]. ### 2.1 Measures and measure spaces **Definition 2.1.** Given a measurable space (Ω, \mathcal{F}) , a function $\mu : \mathcal{F} \to [0, \infty]$ is a measure if - $\circ \ \mu(A) \ge 0 \text{ for any } A \in \mathcal{F};$ - $\circ \ \mu(\emptyset) = 0;$ - \circ if $\{A_1, A_2, \dots\}$ is a countable sequence of disjoint sets in \mathcal{F} , then $\mu(\cup_i A_i) = \sum_i \mu(A_i)$. This is called countable additivity (or σ -additivity). - $(\Omega, \mathcal{F}, \mu)$ is called a measure space, and sets in \mathcal{F} are called measurable sets. If $\mu(\Omega) = 1$, we call μ a probability measure and $(\Omega, \mathcal{F}, \mu)$ a probability space (or a probability triple). - **Remark 2.1.** For convenience, we will often deal with the extended real line $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$. The arithmetic operations involving $\pm \infty$ are defined as follows: (1) $a \pm \infty = \pm \infty$ for any $a \in \mathbb{R}$; (2) $\infty + \infty = \infty$; (3) $a \cdot \infty = \infty$ for any $a \in (0, \infty)$; (4) $\infty \cdot \infty = \infty$. Note that $\infty \infty$, $0 \cdot \infty$ and ∞/∞ are not defined. In measure theory, it is usually fine to assume that $0 \cdot \infty = 0$ but a rigorous proof is always preferred.¹ **Example 2.1.** The following examples are important for probability theory. (i) Let Ω be a discrete sample space (finite or countably infinite). The counting measure on $(\Omega, \mathcal{P}(\Omega))$ is denoted by #. For any $A \in \mathcal{P}(\Omega)$, #(A) is equal to the number of elements in A. $^{^1}$ An example we will see later is the Lebesgue integral $\int_A f \, d\mu$ with $\mu(A) = 0$ and $f \in [0,\infty]$. One can use the definition of Lebesgue integrals to rigorous prove that $\int_A f \, d\mu = 0$. This justifies a seemingly simpler argument: $\int_A f \, d\mu \leq \mu(A) \sup f = 0 \cdot \infty = 0$, which is not rigorous in the last step. (ii) The Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, denoted by m, is given by m((a, b)) = b - a for any $-\infty < a \le b < \infty$ [3, §2.5.1]. - (iii) Unit point mass measures (Dirac measures): Given a measurable space (Ω, \mathcal{F}) and some $x \in \Omega$, we can define the Dirac measure at x by $\delta_x(A) = \mathbb{1}_A(x)$ for any $A \in \mathcal{F}$. - (iv) An arbitrary discrete probability measure: Assume $\Omega = \{\omega_1, \omega_2, \dots\}$ and let $\{p_i \geq 0\}_{i=1}^{\infty}$ be a sequence of non-negative real numbers such that $\sum p_i = 1$. Then we can define a probability measure P by letting $P(\{\omega_i\}) = p_i$ and $P(A) = \sum_{\omega_i \in A} p_i$ for any $A \in \mathcal{P}(\Omega)$. One can check this is a probability measure on $(\Omega, \mathcal{P}(\Omega))$. ### 2.2 Properties of measures **Proposition 2.1.** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Assume that the sets we mention below are all in \mathcal{F} . - (i) Monotonicity: If $A \subset B$, then $\mu(A) \leq \mu(B)$. - (ii) Subadditivity: If $A \subset \bigcup_i A_i$, then $\mu(A) \leq \sum_i \mu(A_i)$. - (iii) Continuity from below: If $A_i \uparrow A$, then $\mu(A_i) \uparrow \mu(A)$. - (iv) Continuity from above: If $A_i \downarrow A$ and $\mu(A_1) < \infty$, then $\mu(A_i) \downarrow \mu(A)$. - (v) Inclusion-exclusion formula: If $\mu(A_i) < \infty$ for i = 1, 2, ..., n, then $$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \left\{ (-1)^{k-1} \sum_{I \subset \{1,2,\dots,n\}: \#(I)=k} \mu\left(\bigcap_{i \in I} A_{i}\right) \right\}.$$ (vi) If $\mu(\cup_n A_n) < \infty$, then $$\mu(\liminf_{n\to\infty} A_n) \le \liminf_{n\to\infty} \mu(A_n) \le \limsup_{n\to\infty} \mu(A_n) \le \mu(\limsup_{n\to\infty} A_n).$$ Further, if $A_n \to A$, then $\mu(A_n) \to \mu(A)$. Proof of part (iii). Let $\{A_n\}$ be an increasing sequence, i.e. $A_1 \subset A_2 \subset \cdots$. Define another sequence of sets $\{B_n\}$ by letting $B_1 = A_1$ and $B_n = A_n \cap A_{n-1}^c$ (this can also be written as $B_n = A_n \setminus A_{n-1}$.) Note that $\bigcup_{i=1}^n B_i = A_n$, which implies that $\bigcup_{n=1}^{\infty} B_n = \lim_{n \to \infty} A_n = A$. Further, $\{B_n\}$ is a disjoint sequence and thus by the σ -additivity of measures, $$\mu(A) = \mu(\bigcup_{n \ge 1} B_n) = \sum_{n \ge 1} \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^n \mu(B_i).$$ The last step follows from the monotone convergence theorem for sequences of real numbers, and note that the limit can be infinity. The rest follows by observing that $\sum_{i=1}^{n} \mu(B_i) = \mu(\bigcup_{i=1}^{n} B_i) = \mu(A_n)$. Proof of part (vi). For a sequence of sets $\{A_n\}$, define $B_n = \sup_{k \geq n} A_k$ and $C_n = \inf_{k \geq n} A_k$. Note that both $\{B_n\}$ and $\{C_n\}$ are monotone sequences and by Proposition 1.3, we have $\liminf_{n \to \infty} A_n = \lim_{n \to \infty} C_n$ and $\limsup_{n \to \infty} A_n = \lim_{n \to \infty} B_n$. Assuming $\mu(B_1) = \mu(\bigcup_{n \geq 1} A_n) < \infty$, by (i) and (iv), $$\mu(\limsup_{n\to\infty} A_n) = \lim_{n\to\infty} \mu(B_n) = \limsup_{n\to\infty} \mu(B_n) \ge \limsup_{n\to\infty} \mu(A_n).$$ Similarly, $\mu(\liminf_{n\to\infty} A_n) = \lim_{n\to\infty} \mu(C_n) \leq \liminf_{n\to\infty} \mu(A_n)$ by (i) and (iii). The first claim then follows since \liminf (of a real sequence) cannot be greater than \limsup . If we further assume that $A_n \to A$, which by definition means that $A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$, then $$\mu(A) \le \liminf_{n \to \infty} \mu(A_n) \le \limsup_{n \to \infty} \mu(A_n) \le \mu(A).$$ Hence, $\limsup_{n\to\infty} \mu(A_n) = \liminf_{n\to\infty} \mu(A_n)$ and $\mu(A_n) \to \mu(A)$. Proof of the remaining part(s). Try it yourself. **Example 2.2.** The inclusion-exclusion formula can be proved by using Venn diagram. The simplest case is given by $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$. **Example 2.3.** Let m be the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $A_n = [n, \infty)$. Then, $m(A_n) = \infty$ for every n, but $m(\lim_{n\to\infty} A_n) = m(\emptyset) = 0$. ## 2.3 Dynkin's π - λ theorem **Definition 2.2.** Let \mathcal{P}, \mathcal{L} be two collections of subsets of Ω . $\circ \mathcal{P}$ is called a π -system if it is closed under finite intersections. • \mathcal{L} is called a λ -system if (i) $\emptyset \in \mathcal{L}$; (ii) \mathcal{L} is closed under complementation; (iii) \mathcal{L} is closed under *countable disjoint* unions. **Lemma 2.1.** If a λ -system is closed under finite intersections (i.e. it is also a π -system), then it is a σ -algebra. *Proof.* Try it yourself. **Theorem 2.1** (Dynkin's π - λ theorem). If \mathcal{P} is a π -system and \mathcal{L} is a λ -system and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$. *Proof.* Let $\lambda(\mathcal{P})$ denote the minimal λ -system generated by \mathcal{P} , which always exists and is unique. Step (1). For $A \in \lambda(\mathcal{P})$, define $\mathcal{G}_A = \{B : A \cap B \in \lambda(\mathcal{P})\}$. We claim \mathcal{G}_A is a λ -system. First, since $A \cap \Omega = A \in \lambda(\mathcal{P})$, we have $\Omega \in \mathcal{G}_A$. Second, suppose $B \in \mathcal{G}_A$ which means $A \cap B \in \lambda(\mathcal{P})$ by the definition of \mathcal{G}_A . Note that $A \cap B^c = (A^c \cup B)^c = (A^c \cup (A \cap B))^c$. Since both A^c and $A \cap B$ are in $\lambda(\mathcal{P})$ and they are disjoint, $A^c \cup (A \cap B)$ and its complement are also in $\lambda(\mathcal{P})$. Thus, $B^c \in \mathcal{G}_A$. Third, if B_1, \ldots, B_n are disjoint sets in \mathcal{G}_A , then $A \cap (\bigcup_{i=1}^n B_i) = \bigcup_{i=1}^n (A \cap B_i)$ is a countable disjoint union of sets in $\lambda(\mathcal{P})$, which is also in $\lambda(\mathcal{P})$. Therefore, $\bigcup_{i=1}^n B_i \in \mathcal{G}_A$. Step (2). Next, we prove $\lambda(\mathcal{P})$ is a σ -algebra. By Lemma 2.1, it suffices to show that $\lambda(\mathcal{P})$ is closed under finite intersections; that is, for any $A, B \in \lambda(\mathcal{P})$, we have $A \cap B \in \lambda(\mathcal{P})$. For any $A, B \in \mathcal{P}, A \cap B \in \mathcal{P} \subset \lambda(\mathcal{P})$ since \mathcal{P} is a π -system. This implies that for any $A \in \mathcal{P}$, we have $\mathcal{P} \subset \mathcal{G}_A$. Because $\lambda(\mathcal{P})$ is the minimal λ -system over \mathcal{P} , we have $\lambda(\mathcal{P}) \subset \mathcal{G}_A$. It follows from the definition of \mathcal{G}_A that for any $A \in \mathcal{P}$ and $B \in \lambda(\mathcal{P})$, $A \cap B \in \lambda(\mathcal{P})$. Interchanging the roles of A and B in the previous conclusion, we obtain that for any $A \in \lambda(\mathcal{P})$ and $B \in \mathcal{P}$, $A \cap B \in \lambda(\mathcal{P})$. But this just means $\mathcal{P} \subset \mathcal{G}_A$. Hence, $\lambda(\mathcal{P}) \subset \mathcal{G}_A$ for any $A \in \lambda(\mathcal{P})$, which implies that $\lambda(\mathcal{P})$ is a π -system. Step (3). By definition, $\sigma(\mathcal{P}) \subset \lambda(\mathcal{P})$ and $\lambda(\mathcal{P}) \subset \mathcal{L}$. Thus, $\sigma(\mathcal{P}) \subset \mathcal{L}$. The proof is complete. **Corollary 2.1.** If \mathcal{P} is a π -system, then $\sigma(\mathcal{P}) = \lambda(\mathcal{P})$, where $\lambda(\mathcal{P})$ denotes the minimal λ -system that contains \mathcal{P} . *Proof.* Try it yourself. **Theorem 2.2.** Let P_1 , P_2 be two probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for any $x \in \mathbb{R}$, we have $P_1((-\infty, x]) = P_2((-\infty, x])$. Then $P_1 = P_2$ on $\mathcal{B}(\mathbb{R})$. *Proof.* This is a very deep result. It tells us the distribution function (which will be defined shortly) uniquely defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We prove the result using Dynkin's theorem. - Step (1). Let $\mathcal{P} = \{(-\infty, x] : x \in \mathbb{R}\}$. Then \mathcal{P} is a π -system since $(-\infty, a] \cap (-\infty, b] = (-\infty, a \wedge b]$. - Step (2). Consider the collection of sets $\mathcal{L} = \{A \in \mathcal{B}(\mathbb{R}) : \mathsf{P}_1(A) = \mathsf{P}_2(A)\}$. Using the properties of probability measures, it is easy to verify that \mathcal{L} is a λ -system. - Step (3). Notice that $\mathcal{P} \subset \mathcal{L}$ and thus $\sigma(\mathcal{P}) \subset \mathcal{L}$. Recalling that $\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R})$, we conclude that $\mathcal{L} \supset \mathcal{B}(\mathbb{R})$, i.e. P_1 and P_2 agree on $\mathcal{B}(\mathbb{R})$. The proof is complete. #### 2.4 Distribution functions **Definition 2.3.** A function $F: \mathbb{R} \to [0,1]$ is called a distribution function if - o F is right continuous, i.e. $\lim_{x_n \downarrow x} F(x_n) = F(x)$ for every x; - \circ F is non-decreasing; - $\circ \lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$. **Definition 2.4.** Quantile functions. - (i) Lower quantile function: $F^{-}(\alpha) = \inf\{x : F(x) \geq \alpha\}.$ - (ii) Upper quantile function: $F^+(\alpha) = \sup\{x : F(x) \le \alpha\}.$ **Example 2.4.** A uniform distribution on (0,1) has distribution function $F(x) = x \mathbb{1}_{(0,1)}(x) + \mathbb{1}_{[1,\infty)}(x)$ (note that F is defined on \mathbb{R}). ### 2.5 Construction of uncountable measure spaces **Definition 2.5.** A measure space $(\Omega, \mathcal{F}, \mu)$ is called σ -finite if there exists a sequence of sets A_1, A_2, \ldots in \mathcal{F} such that $\mu(A_i) < \infty$ for each i and $\Omega = \bigcup_{i=1}^{\infty} A_i$. **Example 2.5.** Examples of σ -finite and non- σ -finite measures. - (i) The Lebesgue measure on the real line and the counting measure defined on some countable space are σ -finite. - (ii) Consider a measure space $(\Omega, \mathcal{F}, \mu)$ such that $\mu(\Omega) > 0$. Define another measure ν by $$\nu(A) = \begin{cases} 0, & \text{if } \mu(A) = 0, \\ \infty, & \text{if } \mu(A) > 0, \end{cases}$$ for any $A \in \mathcal{F}$. One can show that ν is not σ -finite. **Definition 2.6.** An algebra (field) on Ω is a collection of subsets of Ω which contains Ω and is closed under complementation and finite unions. **Definition 2.7.** A semi-algebra \mathcal{S} on Ω is a collection of subsets of Ω such that (i) $\emptyset, \Omega \in \mathcal{S}$; (ii) \mathcal{S} is closed under finite intersections; (iii) if $A \in \mathcal{S}$, then A^c is a finite disjoint union of sets in \mathcal{S} . **Theorem 2.3.** Let S be a semi-algebra and $\mu: S \to [0, \infty]$ be a σ -additive (countably additive) function such that $\mu(\emptyset) = 0$. Then μ has a unique extension which is a measure on the algebra generated by S. *Proof.* See the textbook. \Box **Theorem 2.4** (Caratheodory's extension theorem). A σ -finite measure μ on an algebra \mathcal{A} has a unique extension which is a measure on $\sigma(\mathcal{A})$. *Proof.* See the textbook. \Box **Example 2.6.** Consider the sample space \mathbb{R}^d and let \mathcal{S}_d be the collection of all rectangles in \mathbb{R}^d including \emptyset , i.e. $$\mathcal{S}_d = \{(a_1, b_1] \times \cdots (a_d, b_d] : -\infty \leq a_i \leq b_i < \infty\}.$$ It can be shown that S_d is a semi-algebra on \mathbb{R}^d . When d=1, we can choose an arbitrary distribution function and define $P \colon S_1 \to [0,1]$ by letting P((a,b]) = F(b) - F(a). Then, P has a unique extension \bar{P} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and \bar{P} is a probability measure. Indeed, for any set $A \in \mathcal{B}(\mathbb{R})$, we have $\bar{P}(A) = m(\xi_F(A))$ where m denotes the Lebesgue measure and $\xi_F(A) = \{x \in (0,1] : F^-(x) \in A\}$. # References [1] Dennis D. Cox. *The Theory of Statistics and Its Applications*. Unpublished. - [2] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019. - [3] Sidney Resnick. A Probability Path. Springer, 2019.