Lecture 20

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
9.7 and 9.8 of Resnick [2] and Chapter 3.4 of Durrett [I].

20.1 Auxiliary lemmas

Lemma 20.1. Let zy,...,2, and wy,...,w, be complex numbers with mod-
ulus bound (from above) by 0. Then,
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k=1 k=1

Proof. By triangle inequality,

n
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Hence, if the lemma is true for some fixed n — 1, we have

n n n
sz — Hwk < gt <Z |21 — wk|) + 60"z — .
k=1 k=1 k=2

That is, the lemma is also true for n. Since the case n = 1 is obvious, we
can use induction to conclude the proof. O

Lemma 20.2. If ¢, — c € C, then (1 +¢,/n)" — €.

Proof. For any complex number ¢ with |¢| < 1, we have e = Y 77 b /k!.
Hence,

|l o L 2
e —1—¢| < FSMZESMM
k=2 k=2
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for some constant M € (0,00). In particular, it holds for M = 1. Since
¢, — ¢, we can assume that for sufficiently large n, |c¢,| < K for some
K < o0. By Lemmam (let 2z = 1 + ¢, /n and wy, = e/™),

(05) e
n

which vanishes as n — oo. The result then follows by using e — ¢ (exp is
continuous in the complex plane). O]

K(n—l)/n’c |2 K2eK

n
o Z |1 + n_lcn - ecn/n’ < Z n - < n )
k=1

Lemma 20.3. For a triangular array {c,r € R}, if maxj<p<y, |chi| — 0,
S Gk = A and sup, Y op_y [enk| < 00, then [Th_ (1 + cup) — €.

Proof. Since max;<p<p |¢nx| — 0, we may assume that |c, x| < 1/2 for every
n and k without loss of generality. For |¢| < 1/2, one can easily verify
c—c? <log(l+c) < c. Hence,

hmsuleog L4+ cpp) < hmsuchnk =\

n—oQ n—oo

For the other direction,

hmmfZlog +cnk)>hm1nfz Coh — C2 ):)\—limsuchiyk

n—oo n—0o0 n—o00

k=1
>\ — hmsup max \cnk] Z lCnk] = A
n—oo k=1
Note that all the three assumptions have been used. O

Remark 20.1. Consider the sub-array {cs,;} (that is, we only consider
even rows). Let co,p = 1/4/n if k is odd, and co, . = —1/y/n if k is even.
Then, clearly A= Zk 102nk = 0, and maX1<k<2n|Can| — 0. However,

sup,,, Zk 1 lean k| = 00 and Hk (L4 conp) — e

20.2 Central limit theorem for i.i.d. sequences

Theorem 20.1. Let X, Xo,... be i.i.d. random variables with mean p and
variance 0% < oo. Let S, = X; 4+ ---+ X,,. Then,

Sp —

o TR B,

av/n

where Z is a normal random variable with E[Z] =0 and Var(Z) = 1.
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Proof. Without loss of generality, we can assume ¢ = 0. By Theorem 19.2
and Jensen’s inequality,

: 2 X? tX, 3
‘E(e“xl) - F (1 +itX — — 1)‘ < Emin{’ 61‘ ,|tX1|2} = h(t).

Hence, letting ¢ x denote the characteristic function of X7, we get

ox(t) =1-— ? +r(t), Ir(t)| < h(t).

By Proposition 19.2,

EleiSn/@Vm] — g <L)n _ (1 - —; + r(t/a\/ﬁ))n

We claim that for every t € R,

t
li hl——=]=0. 1
oot (57 2
This implies that E[e/%/(©VM] — ¢=#*/2 by Lemma [20.2l The CLT then fol-

lows from the continuity and uniqueness theorems of characteristic functions.
To verify , note that

n to\ XX P
t_Qh (m) = Em1n{603n1/2, 0_2 S 1,

since EX? = 02. Hence, by the dominated convergence theorem,

3
lim —h <L) <E [lim [H1 X4 } —0,

n—oo 12 g\/ﬁ n—soo 6g3nl/2

for any t € R.

[
Remark 20.2. Consider the error term h(t). Note that because h(t) <
t? EX? < 0o, we can apply DCT to show that h(t) = o(t?); that is, h(t)/t* —
0 as t — 0. Thus, we may write ¢x(t) = 1 — 0t?/2 + o(t?).

Example 20.1. Let X, X5, ... be iid. with P(X; =1) =P(X; = —1) =
1/2 and let S,, = X; +---+ X,,. The De Moivre-Laplace theorem states that

b67m2/2
lim P(a < S,/vn < b) = da,
lim P(a < 8,/v/n < b) /a Wor e
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for any a < b, i.e. S, //n converges in distribution to a standard normal
random variable. Of course this is just a special case of the above central
limit theorem, but it can be proven by straightforward calculations of the
probability mass function of S, using Stirling’s formula:

n

n! ~n"e "V2mn, as n — oo.

Example 20.2. Let &, &, ... be iid. with P(§; =1) =P(§ = —1) = 1/2.
Define {X,, },>1 as

X1=8&, Xo=&&, X3=%&8&, Xu=~888,

X5 = X184, Xo=Xolu, Xr= X3y, Xg=Xy&y,
That is, for m = 2" +j, where 0 < j < 2" landn > 1, welet X,,, = X;&,11.
By construction, it is easy to check that all X;’s are pairwise independent,

which yields that E[S,] = 0 and Var(S,) = n. But the central limit theorem
fails since

Son = &1(1+&)(1+&5) - (1 + &nt),
which satisfies P(Sy3» =0) =1—-2"" — 1.

20.3 Lindeberg-Feller central limit theorem

Theorem 20.2 (Lindeberg-Feller CLT). Consider a triangular array of ran-
dom wvariables {X,r:n > 1, 1 < k < n} where for each n, Xp1,..., Xpn
are independent with mean zero and finite variance. Suppose

(Z) ZZ:l EXg,k - 02 € (O’ OO))
(’Zi) f07" all € > O, limn_mo ZZ:l E (’Xn,k‘2]1{|Xn,k|>e}) = 0.

Then S, /o B 7 where Z has standard normal distribution and Sy = Xp1+
cee Xn,n'

Proof. Let ¢ denote the characteristic function of X, and o7, = EX? .
By Theorem 19.2,
2 2

t*or |3
an,k(t) — 14 5 :

tX,
SEmin{| - ,|tXn,k|2}

<E |tX”7’“|311 E (X2 .1
— 6 {|Xn,k:|§€} + (t n,k {|Xn,k:‘>5})

elt]?
< % (XaiLixaniza) + B (X (x,0>a)
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Summing over k= 1,...,n, we get
n t2 2 ®
D | bnklt) = 1+ 2”
k=1
€|t & oelt]?
k=1

by conditions (i) and (ii). Letting € | 0, we obtain that the left-hand side
goes to zero as n — oo. Next, we notice that

2 2 2
121,?2%0 pSEF ax b (X kL, aia) < €+ B (Xoulgx,ulsa) -
Condition (ii) implies that limsup,, ,, maxy 0., < €. Letting € | 0, we get
maxy, 0, — 0. Hence, for any fixed ¢, there exists N such that for alln > N

and all I < k < n, we have 1 — 252 k/2 > —1. So, we may apply Lemma-
with 8 = 1 to obtain

— 0.

fle 10 5)

k=1

By Lemma [20.3| for every t, as n — o0,

n 202
H ( o ) —y e 1P0%/2

k=1

which yields the result. O

Example 20.3. The CLT for i.i.d. sequences is just a special case. To see
this, let Y1,Ys,... be iid. with mean zero and let X, = Yi/y/n. Then
POy EXfl k = 0% and Lindeberg’s condition (i.e. the second condition in
Theorem [2 can be verified by DCT.

Example 20.4. Define independent random variables {Y} },>1 by

1—c c c(n?—1)
- =g PUR=00=""0
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for some ¢ € (0,1). It is easy to check that E(Y,) = 0 and Var(Y,) = 1
for every n. Now define X, = Yi//n. Then > ;| EX?, = 1. However
Lindeberg’s condition is not satisfied since for any fixed € > 0 and n > €2

n

ZE (|Xn,k|2]]-{\Xnyk|>e}) > Z E (|Xn7k|2]1{|xn,k‘>5})

h=1 h=ley/]
i [ev/n]
> Z (IXnaP Lo, wimpyymy) = e——=— = ¢>0
=[ey/n]
Further, though we do not prove here, S, = X, ; + --- + X,,,, does not

converge in distribution to a standard normal.
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