
Lecture 1

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
1.3 to 1.8 and 2.1 of Resnick [1].

1.1 Set-theoretic limits

Definition 1.1. Limits of sets.

(i) infk≥n Ak =
⋂∞

k=n Ak, supk≥nAk =
⋃∞

k=nAk.

(ii) lim infn→∞An =
⋃∞

n=1

⋂∞
k=nAk, lim supn→∞ An =

⋂∞
n=1

⋃∞
k=nAk.

(iii) We write limn→∞ An = A iff lim supn→∞An = lim infn→∞An = A.

Example 1.1. Let An = (−1/n, 1− 1/n]. Then limn→∞An = [0, 1).

Example 1.2. Define a sequence of sets by A2k−1 = [0, 1], A2k = [0, 2] for
k = 1, 2, . . . . Then lim infn→∞ An = [0, 1] and lim supn→ An = [0, 2].

Proposition 1.1. Monotone sequences of sets.

(i) We say {An} is monotone non-decreasing if A1 ⊂ A2 ⊂ · · · . For such
a sequence, limn→∞An =

⋃∞
n=1An.

(ii) We say {An} is monotone non-increasing if A1 ⊃ A2 ⊃ · · · . For such
a sequence, limn→∞An =

⋂∞
n=1An.

Proof. Try it yourself.

Definition 1.2. Indicator function:

1A(ω) =

{
1, if ω ∈ A,
0, if ω /∈ A.

Other common notation: IA(ω), 1{ω ∈ A}, I(ω ∈ A), etc.

Proposition 1.2. lim inf and lim sup of sets can also be expressed by

lim inf
n→∞

An = {ω ∈ Ω : lim inf
n→∞

1An(ω) = 1} = {ω ∈ Ω :
∑
n≥1

1Ac
n
(ω) < ∞},

lim sup
n→∞

An = {ω ∈ Ω : lim sup
n→∞

1An(ω) = 1} = {ω ∈ Ω :
∑
n≥1

1An(ω) = ∞}.
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Proof. Try it yourself.

Proposition 1.3. Properties of lim inf and lim sup.

(i) lim infn→∞An ⊂ lim supn→∞ An.

(ii) (lim infn→∞ An)
c = lim supn→∞Ac

n.

(iii) lim infn→∞An = limn→∞(infk≥nAk).

(iv) lim supn→∞An = limn→∞(supk≥nAk).

Proof. Try it yourself.

1.2 Probability triple

Definition 1.3. A probability space is a triple (Ω,F ,P) where

◦ Ω is the sample space, a set of all possible outcomes;

◦ F is a σ-algebra on Ω (a collection of subsets of Ω), a set of events;

◦ P: F → [0, 1] is a probability measure.

We will define “σ-algebra” and “probability measure” later, but the following
two examples may be self-explanatory.

Example 1.3. Consider only one flip of a fair coin. Then

Ω = {H,T}, F = {∅, {H}, {T}, {H,T}},
P({H}) = P({T}) = 0.5, P(∅) = 0, P({H,T}) = 1.

Example 1.4. Consider two flips of a fair coin. Then Ω = {HH,HT, TH, TT}.
Each outcome has probability 0.25.

1.3 σ-algebra

Definition 1.4. F is a σ-algebra (or σ-field) on Ω if it satisfies

◦ Ω ∈ F ;

◦ ∀A ∈ F , we have Ac ∈ F ;
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◦ if A1, A2, . . . ,∈ F , then ∪∞
i=1Ai ∈ F .

Equivalently, we can say that a σ-algebra F is a non-empty collection of
subsets of Ω closed under countable union, countable intersection and com-
plementation.

Definition 1.5. Let C be a collection of subsets of Ω. The σ-algebra gener-
ated by C, denoted by σ(C), is a σ-algebra that satisfies

◦ C ⊂ σ(C);

◦ if G is another σ-algebra such that C ⊂ G, then σ(C) ⊂ G.

Theorem 1.1. Let C be an arbitrary collection of subsets of Ω. There is
always a unique minimal σ-algebra that contains C, i.e. σ(C) is well defined.

Proof. First, there always exists some σ-algebra that contains C since C ⊂
P(Ω) (see Example 1.5). Complete the proof yourself by taking intersection
of all σ-algebras that contain C.

Example 1.5. Examples of σ-algebra.

(i) P(Ω): The power set of Ω; that is, the set of all subsets of Ω.

(ii) {Ω, ∅} is the trivial σ-algebra.

(iii) For any A ⊂ Ω such that A ̸= ∅ and A ̸= Ω, {Ω, A,Ac, ∅} is a σ-algebra.

(iv) B(Ω): The Borel σ-algebra is the σ-algebra generated by all the open
subsets (or equivalently, all the closed subsets) of Ω.

1.4 Borel sets on R
Using the notation defined in Example 1.5, we let B(R) = σ(open subsets of R).

Theorem 1.2. The Borel sets on R can be equivalently defined as

B(R) = σ ({(a, b) : −∞ ≤ a ≤ b ≤ ∞})
= σ ({[a, b) : −∞ < a ≤ b ≤ ∞})
= σ ({[a, b] : −∞ < a ≤ b < ∞})
= σ ({(−∞, b] : −∞ < b < ∞}) .
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Proof. See the textbook.

Theorem 1.3. The Borel σ-algebra on the interval (0, 1] satisfies B((0, 1]) =
B(R) ∩ (0, 1], i.e. B((0, 1]) = {A ∩ (0, 1] : A ∈ B(R)}.

Proof. It can be shown that B((0, 1]) = σ({(a, b] : 0 ≤ a ≤ b ≤ 1}). Then,
the result follows from Theorem 1.4 by letting Ω = R, Λ = (0, 1] and S be
the collection of all the intervals of the form (a, b] for −∞ ≤ a ≤ b < ∞.

Theorem 1.4. Let S be a collection of subsets of Ω, and Λ ⊂ Ω. Define
S ∩ Λ = {A ∩ Λ: A ∈ S}. Then,

σ(S ∩ Λ) = σ(S) ∩ Λ = {A ∩ Λ: A ∈ σ(S)},

where σ(S ∩ Λ) is understood as a σ-algebra on Λ and σ(S) is a σ-algebra
on Ω.

Proof. Note that S ∩ Λ, σ(S) ∩ Λ are collections of sets. The use of the
intersection symbol ∩ here is not most standard, but it is convenient. Since
σ(S ∩ Λ) and σ(S) are σ-algebras defined on different spaces, we will write
Ω \ A (or Λ \ A) instead of Ac (which could be ambiguous).

Step 1. It can be shown that σ(S) ∩ Λ is a σ-algebra on Λ (see below).
Further, because S ⊂ σ(S), we have S ∩ Λ ⊂ σ(S) ∩ Λ. Hence, by
the minimality of σ(S ∩ Λ), we have σ(S ∩ Λ) ⊂ σ(S) ∩ Λ.

Step 2. Define G = {A ⊂ Ω: A ∩ Λ ∈ σ(S ∩ Λ)}. Again, we can show G
is a σ-algebra (see below). For any set B ∈ S, B ∩ Λ ∈ S ∩ Λ (by
definition) and thus B∩Λ ∈ σ(S ∩Λ). Hence, S ∩Λ ⊂ σ(S ∩Λ) and
S ⊂ G. By the minimality of σ(S), σ(S) ⊂ G. By the definition of
G, σ(S) ∩ Λ ⊂ σ(S ∩ Λ).

Step 3. Since σ(S ∩Λ) ⊂ σ(S)∩Λ ⊂ σ(S ∩Λ), we conclude that σ(S)∩Λ =
σ(S ∩ Λ).

To prove σ(S) ∩ Λ is a σ-algebra on Λ, we check the three postulates
in the definition. First, Λ = Ω ∩ Λ ∈ σ(S) ∩ Λ since Ω ∈ σ(S). Second,
if B ∈ σ(S) ∩ Λ, we can write B = A ∩ Λ for some A ∈ σ(S). Then
Λ \B = Λ \ (A ∩ Λ) = (Ω \A) ∩ Λ ∈ σ(S) ∩ Λ since Ω \A ∈ σ(S). Lastly, if
B1, B2, · · · ∈ σ(S) ∩ Λ, we can write Bi = Ai ∩ Λ for some Ai ∈ σ(S). Then,
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by the distributive law of sets, ∪Bi = ∪(Ai ∩ Λ) = (∪Ai) ∩ Λ ∈ σ(S) ∩ Λ
since ∪Ai ∈ σ(S).

Finally, we prove G is a σ-algebra on Ω. To simplify the notation, let
H = σ(S ∩ Λ). First, Ω ∈ G since Ω ∩ Λ = Λ ∈ H (recall H is a σ-algebra
on Λ.) Second, if A ∈ G, A ∩ Λ ∈ H. Then, (Ω \ A) ∩ Λ = Λ \ (A ∩ Λ) ∈ H.
By the definition of G, this means Ω \ A ∈ G. Lastly, if A1, A2, · · · ∈ G,
then Ai ∩ Λ ∈ H. This implies that (∪iAi) ∩ Λ = ∪i(Ai ∩ Λ) ∈ H; that is,
∪iAi ∈ G.
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