Lecture 1

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 1.3 to 1.8 and 2.1 of Resnick [1].

1.1 Set-theoretic limits

Definition 1.1. Limits of sets.

- (i) $\inf_{k \ge n} A_k = \bigcap_{k=n}^{\infty} A_k$, $\sup_{k \ge n} A_k = \bigcup_{k=n}^{\infty} A_k$.
- (ii) $\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$, $\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.
- (iii) We write $\lim_{n\to\infty} A_n = A$ iff $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n = A$.

Example 1.1. Let $A_n = (-1/n, 1 - 1/n]$. Then $\lim_{n \to \infty} A_n = [0, 1)$.

Example 1.2. Define a sequence of sets by $A_{2k-1} = [0,1]$, $A_{2k} = [0,2]$ for $k = 1, 2, \ldots$ Then $\liminf_{n \to \infty} A_n = [0,1]$ and $\limsup_{n \to \infty} A_n = [0,2]$.

Proposition 1.1. Monotone sequences of sets.

- (i) We say $\{A_n\}$ is monotone non-decreasing if $A_1 \subset A_2 \subset \cdots$. For such a sequence, $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$.
- (ii) We say $\{A_n\}$ is monotone non-increasing if $A_1 \supset A_2 \supset \cdots$. For such a sequence, $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

Proof. Try it yourself.

Definition 1.2. Indicator function:

$$\mathbb{1}_A(\omega) = \left\{ \begin{array}{ll} 1, & \text{if } \omega \in A, \\ 0, & \text{if } \omega \notin A. \end{array} \right.$$

Other common notation: $I_A(\omega)$, $\mathbb{1}\{\omega \in A\}$, $I(\omega \in A)$, etc.

Proposition 1.2. lim inf and lim sup of sets can also be expressed by

$$\liminf_{n\to\infty}A_n=\{\omega\in\Omega: \liminf_{n\to\infty}\mathbbm{1}_{A_n}(\omega)=1\}=\{\omega\in\Omega: \sum_{n\geq 1}\mathbbm{1}_{A_n^c}(\omega)<\infty\},$$

$$\limsup_{n\to\infty} A_n = \{\omega \in \Omega : \limsup_{n\to\infty} \mathbb{1}_{A_n}(\omega) = 1\} = \{\omega \in \Omega : \sum_{n\geq 1} \mathbb{1}_{A_n}(\omega) = \infty\}.$$

Proof. Try it yourself.

Proposition 1.3. Properties of \liminf and \limsup .

- (i) $\lim \inf_{n\to\infty} A_n \subset \lim \sup_{n\to\infty} A_n$.
- (ii) $(\liminf_{n\to\infty} A_n)^c = \limsup_{n\to\infty} A_n^c$.
- (iii) $\liminf_{n\to\infty} A_n = \lim_{n\to\infty} (\inf_{k\geq n} A_k)$.
- (iv) $\limsup_{n\to\infty} A_n = \lim_{n\to\infty} (\sup_{k\geq n} A_k)$.

Proof. Try it yourself.

1.2 Probability triple

Definition 1.3. A probability space is a triple $(\Omega, \mathcal{F}, \mathsf{P})$ where

- $\circ \Omega$ is the sample space, a set of all possible outcomes;
- \circ \mathcal{F} is a σ -algebra on Ω (a collection of subsets of Ω), a set of events;
- $\circ \ \mathsf{P} \colon \mathcal{F} \to [0,1]$ is a probability measure.

We will define " σ -algebra" and "probability measure" later, but the following two examples may be self-explanatory.

Example 1.3. Consider only one flip of a fair coin. Then

$$\begin{split} \Omega = \{H,T\}, \quad \mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H,T\}\}, \\ \mathsf{P}(\{H\}) = \mathsf{P}(\{T\}) = 0.5, \quad \mathsf{P}(\emptyset) = 0, \quad \mathsf{P}(\{H,T\}) = 1. \end{split}$$

Example 1.4. Consider two flips of a fair coin. Then $\Omega = \{HH, HT, TH, TT\}$. Each outcome has probability 0.25.

1.3 σ -algebra

Definition 1.4. \mathcal{F} is a σ -algebra (or σ -field) on Ω if it satisfies

- $\circ \Omega \in \mathcal{F};$
- $\circ \ \forall A \in \mathcal{F}$, we have $A^c \in \mathcal{F}$;

$$\circ$$
 if $A_1, A_2, \ldots, \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Equivalently, we can say that a σ -algebra \mathcal{F} is a non-empty collection of subsets of Ω closed under countable union, countable intersection and complementation.

Definition 1.5. Let \mathcal{C} be a collection of subsets of Ω . The σ -algebra generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$, is a σ -algebra that satisfies

- $\circ \ \mathcal{C} \subset \sigma(\mathcal{C});$
- \circ if \mathcal{G} is another σ -algebra such that $\mathcal{C} \subset \mathcal{G}$, then $\sigma(\mathcal{C}) \subset \mathcal{G}$.

Theorem 1.1. Let C be an arbitrary collection of subsets of Ω . There is always a unique minimal σ -algebra that contains C, i.e. $\sigma(C)$ is well defined.

Proof. First, there always exists some σ -algebra that contains \mathcal{C} since $\mathcal{C} \subset \mathcal{P}(\Omega)$ (see Example 1.5). Complete the proof yourself by taking intersection of all σ -algebras that contain \mathcal{C} .

Example 1.5. Examples of σ -algebra.

- (i) $\mathcal{P}(\Omega)$: The power set of Ω ; that is, the set of all subsets of Ω .
- (ii) $\{\Omega,\emptyset\}$ is the trivial σ -algebra.
- (iii) For any $A \subset \Omega$ such that $A \neq \emptyset$ and $A \neq \Omega$, $\{\Omega, A, A^c, \emptyset\}$ is a σ -algebra.
- (iv) $\mathcal{B}(\Omega)$: The Borel σ -algebra is the σ -algebra generated by all the open subsets (or equivalently, all the closed subsets) of Ω .

1.4 Borel sets on \mathbb{R}

Using the notation defined in Example 1.5, we let $\mathcal{B}(\mathbb{R}) = \sigma$ (open subsets of \mathbb{R}).

Theorem 1.2. The Borel sets on \mathbb{R} can be equivalently defined as

$$\mathcal{B}(\mathbb{R}) = \sigma \left(\{ (a, b) \colon -\infty \le a \le b \le \infty \} \right)$$

$$= \sigma \left(\{ [a, b) \colon -\infty < a \le b \le \infty \} \right)$$

$$= \sigma \left(\{ [a, b] \colon -\infty < a \le b < \infty \} \right)$$

$$= \sigma \left(\{ (-\infty, b] \colon -\infty < b < \infty \} \right).$$

Proof. See the textbook.

Theorem 1.3. The Borel σ -algebra on the interval (0,1] satisfies $\mathcal{B}((0,1]) = \mathcal{B}(\mathbb{R}) \cap (0,1]$, i.e. $\mathcal{B}((0,1]) = \{A \cap (0,1] : A \in \mathcal{B}(\mathbb{R})\}$.

Proof. It can be shown that $\mathcal{B}((0,1]) = \sigma(\{(a,b]: 0 \le a \le b \le 1\})$. Then, the result follows from Theorem 1.4 by letting $\Omega = \mathbb{R}$, $\Lambda = (0,1]$ and \mathcal{S} be the collection of all the intervals of the form (a,b] for $-\infty \le a \le b < \infty$. \square

Theorem 1.4. Let S be a collection of subsets of Ω , and $\Lambda \subset \Omega$. Define $S \cap \Lambda = \{A \cap \Lambda : A \in S\}$. Then,

$$\sigma(S \cap \Lambda) = \sigma(S) \cap \Lambda = \{A \cap \Lambda \colon A \in \sigma(S)\},\$$

where $\sigma(S \cap \Lambda)$ is understood as a σ -algebra on Λ and $\sigma(S)$ is a σ -algebra on Ω .

Proof. Note that $S \cap \Lambda$, $\sigma(S) \cap \Lambda$ are collections of sets. The use of the intersection symbol \cap here is not most standard, but it is convenient. Since $\sigma(S \cap \Lambda)$ and $\sigma(S)$ are σ -algebras defined on different spaces, we will write $\Omega \setminus A$ (or $\Lambda \setminus A$) instead of A^c (which could be ambiguous).

- Step 1. It can be shown that $\sigma(S) \cap \Lambda$ is a σ -algebra on Λ (see below). Further, because $S \subset \sigma(S)$, we have $S \cap \Lambda \subset \sigma(S) \cap \Lambda$. Hence, by the minimality of $\sigma(S \cap \Lambda)$, we have $\sigma(S \cap \Lambda) \subset \sigma(S) \cap \Lambda$.
- Step 2. Define $\mathcal{G} = \{A \subset \Omega \colon A \cap \Lambda \in \sigma(S \cap \Lambda)\}$. Again, we can show \mathcal{G} is a σ -algebra (see below). For any set $B \in \mathcal{S}$, $B \cap \Lambda \in \mathcal{S} \cap \Lambda$ (by definition) and thus $B \cap \Lambda \in \sigma(\mathcal{S} \cap \Lambda)$. Hence, $\mathcal{S} \cap \Lambda \subset \sigma(\mathcal{S} \cap \Lambda)$ and $\mathcal{S} \subset \mathcal{G}$. By the minimality of $\sigma(\mathcal{S})$, $\sigma(\mathcal{S}) \subset \mathcal{G}$. By the definition of \mathcal{G} , $\sigma(\mathcal{S}) \cap \Lambda \subset \sigma(\mathcal{S} \cap \Lambda)$.
- Step 3. Since $\sigma(S \cap \Lambda) \subset \sigma(S) \cap \Lambda \subset \sigma(S \cap \Lambda)$, we conclude that $\sigma(S) \cap \Lambda = \sigma(S \cap \Lambda)$.

To prove $\sigma(S) \cap \Lambda$ is a σ -algebra on Λ , we check the three postulates in the definition. First, $\Lambda = \Omega \cap \Lambda \in \sigma(S) \cap \Lambda$ since $\Omega \in \sigma(S)$. Second, if $B \in \sigma(S) \cap \Lambda$, we can write $B = A \cap \Lambda$ for some $A \in \sigma(S)$. Then $\Lambda \setminus B = \Lambda \setminus (A \cap \Lambda) = (\Omega \setminus A) \cap \Lambda \in \sigma(S) \cap \Lambda$ since $\Omega \setminus A \in \sigma(S)$. Lastly, if $B_1, B_2, \dots \in \sigma(S) \cap \Lambda$, we can write $B_i = A_i \cap \Lambda$ for some $A_i \in \sigma(S)$. Then,

by the distributive law of sets, $\cup B_i = \cup (A_i \cap \Lambda) = (\cup A_i) \cap \Lambda \in \sigma(\mathcal{S}) \cap \Lambda$ since $\cup A_i \in \sigma(\mathcal{S})$.

Finally, we prove \mathcal{G} is a σ -algebra on Ω . To simplify the notation, let $\mathcal{H} = \sigma(\mathcal{S} \cap \Lambda)$. First, $\Omega \in \mathcal{G}$ since $\Omega \cap \Lambda = \Lambda \in \mathcal{H}$ (recall \mathcal{H} is a σ -algebra on Λ .) Second, if $A \in \mathcal{G}$, $A \cap \Lambda \in \mathcal{H}$. Then, $(\Omega \setminus A) \cap \Lambda = \Lambda \setminus (A \cap \Lambda) \in \mathcal{H}$. By the definition of \mathcal{G} , this means $\Omega \setminus A \in \mathcal{G}$. Lastly, if $A_1, A_2, \dots \in \mathcal{G}$, then $A_i \cap \Lambda \in \mathcal{H}$. This implies that $(\cup_i A_i) \cap \Lambda = \cup_i (A_i \cap \Lambda) \in \mathcal{H}$; that is, $\cup_i A_i \in \mathcal{G}$.

References

[1] Sidney Resnick. A Probability Path. Springer, 2019.