Lecture 1
Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
1.3 to 1.8 and 2.1 of Resnick [1].

1.1 Set-theoretic limits
Definition 1.1. Limits of sets.

(1) infrsp Ap = Moon Ak SUPrs, A = Ui, Ak

(i) liminf, oo Ap = U;oq Miey, Ak, limsup, o An = ooy U, Ak
(iii) We write lim,,_,o, A, = A iff limsup,,_,., A, = liminf, , A, = A.
Example 1.1. Let A, = (—1/n, 1 —1/n]. Then lim,_,., 4, = [0,1).

Example 1.2. Define a sequence of sets by Agx_1 = [0, 1], Ao = [0,2] for
k=1,2,.... Then liminf, ,, A, = [0, 1] and limsup,,_, A,, = [0, 2].

Proposition 1.1. Monotone sequences of sets.

(1) We say {A,} is monotone non-decreasing if Ay C Ay C ---. For such
a sequence, lim,, o, A, = 5o, An.

(11) We say {A,} is monotone non-increasing if Ay D Ay D ---. For such
a sequence, limy, oo A, = (oo, An.

Proof. Try it yourself. O

Definition 1.2. Indicator function:

1, ifwedA,
ﬂA(w)_{ 0, ifwé¢gA.

Other common notation: [4(w), 1{w € A}, I(w € A), etc.

Proposition 1.2. liminf and limsup of sets can also be expressed by

liminf A, = {w € Q: liminf 4, (w) =1} = {w € Q: Y Tue(w) < o0},
n—oo

n—00
n>1

limsup A, ={w € Q: limsup 14, (w) =1} ={w e Q: Z]lAn(w) = oo}

n—00 n—00
n>1
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Proof. Try it yourself. O
Proposition 1.3. Properties of liminf and lim sup.

(1) liminf, ,. A, C limsup,,_,. A,.

c
n:

(i7) (liminf, . A,)¢ = limsup,,_,. A
(157) liminf, . A, = lim, o (infi>, Ag).
(iv) limsup,, ., Ay = lim, o (SUps>,, Ak)-

Proof. Try it yourself. m

1.2 Probability triple
Definition 1.3. A probability space is a triple (£2, F,P) where

o () is the sample space, a set of all possible outcomes;
o Fis a o-algebra on Q (a collection of subsets of €2), a set of events;
o P: F —[0,1] is a probability measure.

We will define “o-algebra” and “probability measure” later, but the following
two examples may be self-explanatory.

Example 1.3. Consider only one flip of a fair coin. Then

Q={HT}, F={0{H}{T},{H T}},
P{H}) =P({T}) =05, P(0)=0 P{HT} =1
Example 1.4. Consider two flips of a fair coin. Then Q2 = {HH, HT,TH, TT}.
Each outcome has probability 0.25.

1.3 o-algebra
Definition 1.4. F is a o-algebra (or o-field) on 2 if it satisfies

o Qe F,;
o VA € F, we have A¢ € F;
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o) ifAl,Ag,...,Ef, thenU;’;AiE}_.

Equivalently, we can say that a o-algebra F is a non-empty collection of
subsets of €2 closed under countable union, countable intersection and com-
plementation.

Definition 1.5. Let C be a collection of subsets of (2. The o-algebra gener-
ated by C, denoted by o(C), is a o-algebra that satisfies

o CCao(C)
o if G is another o-algebra such that C C G, then o(C) C G.

Theorem 1.1. Let C be an arbitrary collection of subsets of ). There is
always a unique minimal o-algebra that contains C, i.e. o(C) is well defined.

Proof. First, there always exists some o-algebra that contains C since C C
P(Q) (see Example [1.5)). Complete the proof yourself by taking intersection
of all o-algebras that contain C. O]

Example 1.5. Examples of o-algebra.
(i) P(2): The power set of §2; that is, the set of all subsets of (.

(ii) {€, 0} is the trivial o-algebra.

(iii) For any A C Q such that A # 0 and A # Q, {Q, A, A¢, ()} is a o-algebra.
)

B(2): The Borel o-algebra is the o-algebra generated by all the open
subsets (or equivalently, all the closed subsets) of €.

(iv

1.4 Borel sets on R
Using the notation defined in Example[L.5, we let B(R) = o(open subsets of R).

Theorem 1.2. The Borel sets on R can be equivalently defined as

b): —oo<a<b< oo}
a,b): —oo<a<b< oo}
b: —oo<a<b< oo})
(—00,b]: —o0 < b<o0}).
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Proof. See the textbook. O

Theorem 1.3. The Borel o-algebra on the interval (0, 1] satisfies B((0,1]) =
B(R) N (0,1], i.e. B((0,1]) ={AN(0,1]: A € B(R)}.

Proof. It can be shown that B((0,1]) = 0({(a,b]: 0 < a < b < 1}). Then,
the result follows from Theorem by letting 2 = R, A = (0,1] and S be
the collection of all the intervals of the form (a,b] for —co <a <b<oo. O

Theorem 1.4. Let S be a collection of subsets of Q, and A C Q. Define
SNA={ANA: AeS}. Then,

o(SNA)=0(S)NA={ANA: Aco(S)},

where o(S N A) is understood as a o-algebra on A and o(S) is a o-algebra

on €.

Proof. Note that S N A, o(S) N A are collections of sets. The use of the
intersection symbol N here is not most standard, but it is convenient. Since
o(SNA) and o(S) are o-algebras defined on different spaces, we will write
2\ A (or A\ A) instead of A° (which could be ambiguous).

Step 1. It can be shown that o(S) N A is a o-algebra on A (see below).
Further, because S C ¢(S), we have SN A C o(S) N A. Hence, by
the minimality of o(S N A), we have (SN A) C o(S) NA.

Step 2. Define G = {A C Q: ANA € o(SNA)}. Again, we can show G
is a o-algebra (see below). For any set B € S, BNA € SNA (by
definition) and thus BNA € o(SNA). Hence, SNA C o(SNA) and
S C G. By the minimality of o(S), o(S) C G. By the definition of
G,o(S)NACo(SNA).

Step 3. Since o(SNA) C o(S)NA C o(SNA), we conclude that o(S)NA =
a(SNA).

To prove o(S) N A is a o-algebra on A, we check the three postulates
in the definition. First, A = QN A € o(S) N A since Q € o(S). Second,
if B € o(S)NA, we can write B = AN A for some A € o(S). Then
A\B=A\(ANA)=Q\A)NAeca(S)NAsince 2\ A € g(S). Lastly, if
By, By, --- € 0(S)N A, we can write B; = A; N A for some A; € o(S). Then,
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by the distributive law of sets, UB; = U(A; NA) = (UA)NA € a(S)NA
since UA; € o(S).

Finally, we prove G is a o-algebra on ). To simplify the notation, let
H =o0(SNA). First, Q € G since QN A=A € H (recall H is a o-algebra
on A.) Second, if A€ G, ANA € H. Then, (Q\A)NA=A\(ANA) e H.
By the definition of G, this means 2\ A € G. Lastly, if A, Ay,--- € G,
then A; N A € H. This implies that (U;A;) N A = U;(A; N A) € H; that is,
U;A4; € G. O
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