Lecture 18

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
8.2 to 8.6 and 9.6 of Resnick [3] and Chapter 3.2 of Durrett [2].

18.1 More about convergence in distribution

Theorem 18.1 (Skorohod’s representation theorem). If {X,},>0 is a se-
quence of random variables defined on (Q, F,P) and X, RS Xo. Then there
exist random variables {Y,}n>o0 defined on ([0,1], B(]0,1]),m) where m de-

notes the Lebesgue measure such that for everyn >0, X, L Y, (ie. Xp, Y,
have the same distribution) and Y, “3 Y.

Proof. See the textbook. O]

Example 18.1 (Delta method). Given i.i.d. observations X, Xs,... with
mean £ and finite variance o2, by central limit theorem /n(X, — u)/o A
N(0,1) where X,, denotes the average of the first n observations and N(0, 1)
is a standard normal random variable. Skorohod’s representation theorem
can be used to prove the following result which is widely used in statistics.
If ¢ is a Borel function with non-zero derivative at p, then

Vi [9(Xn) — g(w)]

P — N(0,1).

Theorem 18.2. X, B x if and only if for every bounded continuous func-
tion h, we have Elh(X,)] — E[h(X)].

Proof. By Skorohod’s representation theorem, we may let {Y,,} be a sequence
of random variables such that Y, ¥ Y, X, 2 Y, and X 2y, By the

continuous mapping theorem for almost sure convergence, we have h(Y},) %

h(Y'), and the bounded convergence theorem implies that

E[n(X,)] = E[h(Ya)] = E[h(Y)] = E[h(X)].
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To prove the converse, fix an arbitrary x € R and let

1 y<ux
hae(y) = 0 y>x+e€
linear r<y<zx+e,
which is continuous and bounded and thus E[h, (X,)] = E[h.(X)]. So,

limsup P(X,, < z) <limsup Elh,(X,)] = E[h,(X)] <P(X <z +e).

n—oo n— o0
Letting € | 0, we get limsup,,_,., P(X, < z) < P(X < z). Similarly,
liminf P(X,, <z) > liminf E[h,_ (X,)] = E[hy—c(X)] > P(X <2z —¢).
n—oo

n—oo

Letting € | 0, we get liminf,, . P(X, < z) > P(X < z) for any = at which
Fx (the distribution function of X) is continuous. Combining the lim sup
and lim inf inequalities, we conclude that X, 2 x. O
Theorem 18.3 (Continuous mapping theorem). Let g : R — R be a mea-
surable function and denote the set of discontinuity points by D, = {x €
R: g is discontinuous at z}. If X, A X and P(X € D,;) =0, then g(X,) A
g9(X). If in addition g is bounded, then E[g(X,)] — E[g(X)].

Proof. Let {Y,} be a sequence of random variables such that Y, 3 Y,

X, 2V, and X 2 Y. Define two events 4 = {w: Yy(w) = Y(w)} and
B = {w:Y(w) € Dg}. Then, P(A) = 1, and P(B) = P(Y € Dj) =
(PoY 1)(D5) = (PoX')(Dg) = P(X € D;) = 1. By the union bound,
P(AN B) = 1. But note that for any w € AN B, g(Yn(w)) = g(Y(w)).

Thus, ¢(X,) 2 g(Yn) &8 g(Y) Z g(X). The second conclusion follows from
bounded convergence theorem. O

Proposition 18.1. If X, B ¢ where ¢ is a constant, then X, K (provided
that X1, Xs, ... are defined on the same space.)

Proof. Since X,, 3 ¢, we have P(X,<z)—0ifz<cand P(X, <z)—>1
if x > ¢ (note that we may not have the convergence at x = ¢.) This implies,
for any € > 0,

P(| X, —c|>¢€) =P(X,>c+e)+P(X,<c—¢)
<1-P(X, <c+e€)+P(X,<c—¢€) —0.

That is, X, R, 0
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Theorem 18.4 (Slutsky’s theorem). Suppose X, B X and Y, 5 ¢ where ¢
is a constant. Then X,, +Y,, Bxy c, X,)Y, B X and X,/Y, Y X/c (if
c#0).

Proof. See the textbook. n

18.2 Limits of distribution functions

Theorem 18.5 (Helly’s selection theorem). Let {F,},>1 be a sequence of
distribution functions. There exists a subsequence {Fnu}i>1 and a right-
continuous non-decreasing function F such that limy_,o Foiy(y) = F(y) at
all continuity points y of F.

Proof. See Resnick [3| Theorem 9.6.1]. O

Theorem 18.6 (Tightness). Let {F,},>1 be a sequence of distribution func-
tions. Then every subsequential limit is the distribution function of a prob-
ability measure if and only if {F,} is tight, i.e. for any e > 0, there exists
M, < oo such that liminf, o p,([—Me, M.]) > 1 — €, where p,, denotes the
distribution corresponding to F,.

Proof. See Resnick [3|, Theorem 9.6.2]. O

Example 18.2. If X, L X, then the sequence {F),} is tight where F, is
the distribution function of X,,. To prove this, first note that since a random
variable is real-valued, for any ¢, there exists C, such that P(|X| > C.) < ¢/2.
Since there are at most countably many discontinuity points of F, we can
pick M, > C. such that £M, are both continuity points of F' and thus
P(|Xn| > M) — P(|X]| > M,) < €/2, i.e. there exists N < oo such that
inf, >y P(| X, < M) >1—¢

Example 18.3. Let pu,, be the distribution of a normal random variable with
mean n and variance 1. Then p,([—M, M]) < 1/2 for any n > M. That is,
{1tn}n>1 1s not a tight collection of measures.

18.3 More about the convergence of probability mea-
sures

Theorem 18.7 (Portmanteau theorem). Let pq, pio,... and p be distribu-
tions on (R4, B(RY)). The following statements are equivalent.

3
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(1) pn converges weakly to pu.

(i) X, B X where X, has distribution u, and X has distribution p.
(i) For any bounded and continuous function f, [ fdu, — [ fdpu.
(iv) For any bounded and Lipschitz function f, [ fdu, — [ fdpu.
(v) For any open sets G, iminf, . 11,(G) > u(G).
(vi) For any closed sets K, limsup,,_, . pin(K) < u(K).
(vii) For any Borel sets A with p(0A) =0, lim, 0o pn(A) = p(A).
Proof. See Durrett [2, Theorem 3.2.1]. O

Definition 18.1. The total variation distance between two probability mea-
sures (i, v on (§2, F) is defined as

dov(p,v) = |l = vllry = sup [u(A) = v(A)].
AeF

We say p,, converges to p in total variation distance if ||u,, — p||rv — 0.

Proposition 18.2. Let {u1,} and p be probability measures on (R, B(R)). If
||t — ptllrv — 0, then p, converges weakly to p.

Proof. This follows from the definition. O

Example 18.4. Let p, = 41/, i.e. a unit point mass on the point n~t It is
easy to see that the corresponding distribution function converges pointwise
to F(z) = L) (x) except at the discontinuity point 2 = 0. Hence, u,
converges weakly to u = &yp. However, ||, — p||Tv = 1 for every n.

Theorem 18.8 (Scheffe’s lemma). Let {p,} and u be probability distributions
absolutely continuous w.r.t. some measure X\ on (R, B(R)). Let f, and f be
the corresponding Radon-Nikodym densities. If f, — f A-a.e., then [ |f, —
fldx = 0 and ||pn — pllrv — 0.

Proof. First, since Radon-Nikodym derivatives are non-negative by defini-
tion,

/\fn—fydAg /(fnJrf)d)\:Q
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That is, by letting g, = f, + f, we have g, > |f, — f| and [ g,d\ —
flirmHOO gn dX. So, by DCT

/‘fn—f|d>\—>/Ji_}rgo|fn—f\d)\zo.

The second conclusion follows from Theorem 14.4. We replicate that proof
here (just in different notation). For any A € B(R),

[1n(A) = p(A)] =

/A<fn—f>dA‘ < [ U= siix< [1g - i

Hence, [ |f, — f|ld\ — 0 implies that |, (A) — u(A)| — 0 uniformly over all
Borel sets A. That is, ||p, — pf|Tv — 0. O

Proposition 18.3. Let {u,} and p be probability measures on (Z,P(Z))
where Z denotes the set of all integers. Then ||, — pllTv — 0 if and only if
[ converges weakly to p.

Proof. Use Scheffe’s lemma. O
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!Here we are applying a general version of DCT where we have a sequence of dominat-
ing functions {g,} which converges pointwise and [ g,d\ — [(lim g, )dX. You can check
that the proof is almost the same as that for the original one (Theorem 5.3).
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