Lecture 17

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 4.5 and 7.3 to 7.6 of Resnick [2] and Chapter 2.5 of Durrett [1].

17.1 Kolmogorov zero-one law

Definition 17.1. Consider a sequence of random variables X_1, X_2, \ldots Let

$$\mathcal{F}'_n = \sigma(X_n, X_{n+1}, \dots) = \sigma\left(\bigcup_{i=n}^{\infty} \sigma(X_i)\right)$$

be the smallest σ -algebra with respect to which X_n, X_{n+1}, \ldots are measurable. The tail σ -algebra is defined as $\mathcal{T} = \bigcap_{n \geq 1} \mathcal{F}'_n$.

Example 17.1. Let B_n be a sequence of Borel sets. Then $\{X_n \in B_n, \text{ i.o.}\} \in \mathcal{T}$. In particular, by letting $X_n = \mathbb{1}_{A_n}$ and $B_n = \{1\}$, we get $\{A_n, \text{ i.o.}\} \in \mathcal{T}$.

Example 17.2. Let $S_n = X_1 + \cdots + X_n$. Then $\{S_n \text{ converges to a finite limit}\} \in \mathcal{T}$ but $\{\limsup_{n\to\infty} S_n > 0\} \notin \mathcal{T}$. However, if c_n is a sequence of real numbers such that $c_n \to \infty$, then $\{\limsup_{n\to\infty} S_n/c_n > x\} \in \mathcal{T}$.

Theorem 17.1 (Kolmogorov zero-one law). If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$, then P(A) = 0 or P(A) = 1.

Proof. We show that A is independent of itself if $A \in \mathcal{T}$.

Step 1. Recall that $\mathcal{F}_{n-1} = \sigma(X_1, \ldots, X_{n-1})$ is generated by the π -system of all the events $B = \{X_1 \leq x_1, \ldots, X_{n-1} \leq x_{n-1}\}$ for $x_1, \ldots, x_{n-1} \in \mathbb{R}$. Further, one can use Dynkin's theorem to show that \mathcal{F}'_n is generated by the π -system of all the events of the form¹

$$C = \{X_n \le x_n, \dots, X_{n+k} \le x_{n+k}\}, \qquad k \in \mathbb{N}, \ x_n, \dots, x_{n+k} \in \mathbb{R}.$$

Clearly, any such sets B and C are independent and thus by Lemma 7.1, \mathcal{F}_{n-1} and \mathcal{F}'_n are independent.

Step 2. We show that $\mathcal{F}'_1 = \sigma(X_1, X_2, \dots)$ is independent of \mathcal{T} . First, assume $\tilde{A} \in \mathcal{F}_k$ for some k. Since $\mathcal{T} \subset \mathcal{F}'_{k+1}$, then from Step 1 we know that

¹In general, given σ-algebras A_1, A_2, \ldots , then $\sigma(\bigcup_{i=1}^{\infty} A_i) = \sigma(\mathcal{P})$ where \mathcal{P} is the π -system $\{\bigcap_{i \in I} A_i : I \subset \{1, 2, \ldots\}, A_i \in \mathcal{A}_i, 1 \leq |I| < \infty\}$.

any event in \mathcal{T} is independent of \tilde{A} , which implies \mathcal{T} and \mathcal{F}_k are independent since \tilde{A} is arbitrary. Since both $\bigcup_{n\geq 1}\mathcal{F}_n$ and \mathcal{T} are π -systems, by Lemma 7.1 we have \mathcal{T} and $\sigma(X_1, X_2, \dots)$ are independent.

Hence, we conclude that A is independent of itself, i.e. $P(A \cap A) = P(A)P(A)$, which yields P(A) = 0 or 1.

Corollary 17.1. Let \mathcal{T} be a tail σ -algebra generated by a sequence of independent random variables. If a random variable Y is measurable w.r.t. \mathcal{T} , i.e. $Y \in \mathcal{T}$, then P(Y = c) = 1 for some $c \in \mathbb{R}$.

Proof. Let F_Y be the distribution function of Y. Observe that $F_Y(y) \in \{0, 1\}$ for all $y \in \mathbb{R}$ by Kolmogorov zero-one law.

Example 17.3. Consider a sequence of independent random variables $\{X_n\}_{n\geq 1}$. Both $\liminf_{n\to\infty} X_n$ and $\limsup_{n\to\infty} X_n$ are measurable w.r.t. \mathcal{T} . Therefore, with probability 1, $\liminf_{n\to\infty} X_n$ and $\limsup_{n\to\infty} X_n$ are constants (note they may be $\pm\infty$).

17.2 Convergence of random series

We say a (random) series converges if and only if it converges to a finite limit.

Theorem 17.2 (Lévy's theorem). Let $\{X_n\}_{n\geq 1}$ be a sequence of independent random variables, then $\sum_{n=1}^{\infty} X_n$ converges in probability if and only if $\sum_{n=1}^{\infty} X_n$ converges almost surely.

Proof. See Resnick [2, Theorem 7.3.2].

Theorem 17.3 (Kolmogorov's maximal inequality). Let X_1, \ldots, X_n be independent with $E[X_i] = 0$ and $Var(X_i) < \infty$ for all i. Then,

$$\mathsf{P}(\max_{1 \le k \le n} |S_k| \ge x) \le \frac{\mathsf{Var}(S_n)}{x^2}.$$

Proof. See Durrett [1, Theorem 2.5.5].

Remark 17.1. This result is used in Kolmogorov's proof for SLLN. Note that we need the mutual independence among X_1, X_2, \ldots For comparison, Chebyshev's inequality yields $P(|S_n| \ge x) \le Var(S_n)/x^2$.

Theorem 17.4 (Kolmogorov convergence criterion). Suppose X_1, X_2, \ldots are independent with $E[X_i] = 0$ for all i and $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$. Then, $\sum_{n=1}^{\infty} X_n$ converges a.s.

Proof. See Resnick [2, Theorem 7.3.3]. \square

Theorem 17.5 (Kolmogorov's three series theorem). Let X_1, X_2, \ldots be independent. In order that $\sum_{n=1}^{\infty} X_n$ converges almost surely, it is necessary and sufficient that for some c > 0,

- (i) $\sum_{n=1}^{\infty} P(|X_n| > c) < \infty$,
- (ii) $\sum_{n=1}^{\infty} E[X_n \mathbb{1}_{\{|X_n| < c\}}]$ converges (to a finite limit),
- (iii) $\sum_{n=1}^{\infty} \operatorname{Var}(X_n \mathbb{1}_{\{|X_n| < c\}}) < \infty.$

Proof of the "sufficiency" part in Theorem 17.5. Define $Y_n = X_n \mathbb{1}_{\{|X_n| < c\}}$. By Kolmogorov convergence criterion and condition (iii), $\sum_{n=1}^{\infty} (Y_n - E[Y_n])$ converges a.s. By condition (ii), it means that $\sum_{n=1}^{\infty} Y_n$ converges a.s. By Borel-Cantelli lemma and condition (i), $P(X_n \neq Y_n, i.o.) = 0$. Hence, $\sum_{n=1}^{\infty} X_n$ converges a.s.

For the "necessity" part, see the textbook.

Lemma 17.1 (Kronecker's lemma). If $a_n \uparrow \infty$ and $\sum_{n=1}^{\infty} (x_n/a_n)$ converges,

$$\frac{1}{a_n} \sum_{k=1}^n x_k \to 0.$$

Proof. See Resnick [2, Lemma 7.4.1].

Theorem 17.6 (Kolmogorov's SLLN). Let X_1, X_2, \ldots be i.i.d. random variables with $E|X_1| < \infty$ and mean μ . Then $S_n/n \stackrel{a.s.}{\to} \mu$.

Proof. Again let's define $Y_k = X_k \mathbbm{1}_{\{|X_k| \le k\}}$ and $T_n = Y_1 + \dots + Y_n$ and recall that it suffices to show $T_n/n \stackrel{a.s.}{\to} \mu$. Let $Z_k = Y_k - E(Y_k)$. Recall that by Lemma 16.3, $\sum_{k=1}^{\infty} \mathrm{Var}(Z_k)/k^2 < \infty$, which together with Theorem 17.4 implies that $\sum_{k=1}^{\infty} Z_k/k$ converges a.s. By Kronecker's lemma, this further yields that $n^{-1} \sum_{k=1}^{n} Z_k \to 0$, i.e.

$$\frac{T_n}{n} - \frac{1}{n} \sum_{k=1}^n E(Y_k) \to 0$$
, a.s.

By DCT, $E(Y_k) \to \mu$ and thus $n^{-1} \sum_{k=1}^n E(Y_k) \to \mu$. Therefore, $T_n/n \stackrel{a.s.}{\to} \mu$.

17.3 Rates of convergence for LLN

Theorem 17.7. Let X_1, X_2, \ldots be i.i.d. random variables with $E[X_1] = 0$ and $Var(X_1) < \infty$. Then for any $\epsilon > 0$,

$$\frac{S_n}{\sqrt{n}(\log n)^{1/2+\epsilon}} \stackrel{a.s.}{\to} 0.$$

Proof. Let $a_n = n^{1/2} (\log n)^{1/2+\epsilon}$ for $n \ge 2$. Observe that

$$\sum_{n=2}^{\infty} \operatorname{Var}(X_n/a_n) = \sum_{n=2}^{\infty} \frac{\sigma^2}{n(\log n)^{1+2\epsilon}} < \infty.$$

(Check it! Hint: $d \log x = x^{-1} dx$.) By Theorem 17.4, $\sum_{n=1}^{\infty} X_n/a_n$ converges a.s. Apply Kronecker's lemma to conclude the proof.

Theorem 17.8. Let X_1, X_2, \ldots be i.i.d. random variables with $E[X_1] = 0$ and $E[X_1]^p < \infty$, where $1 . Then <math>S_n/n^{1/p} \stackrel{a.s.}{\to} 0$.

Proof. See Durrett [1, Theorem 2.5.12].

Theorem 17.9 (Law of iterated logarithm). Let X_1, X_2, \ldots be i.i.d. random variables with $E[X_1] = 0$ and $Var(X_1) = 1$. Then,

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log(\log n)}} = 1, \quad a.s.$$

Proof. See Durrett [1, Theorem 8.5.2].

Remark 17.2. The law of iterated logarithm is usually treated in chapters/books on random walks or Brownian motion. We can prove that

$$\frac{S_n}{\sqrt{2n\log(\log n)}} \stackrel{P}{\to} 0.$$

So, $\sqrt{n \log(\log n)}$ is the rate at which the limit in probability and the almost sure limit supremum/infimum are different. Another critical rate is \sqrt{n} . We will see that the central limit theorem implies that S_n/\sqrt{n} converges in distribution to a standard normal random variable.

References

[1] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.

[2] Sidney Resnick. A Probability Path. Springer, 2019.