
Lecture 17

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
4.5 and 7.3 to 7.6 of Resnick [2] and Chapter 2.5 of Durrett [1].

17.1 Kolmogorov zero-one law

Definition 17.1. Consider a sequence of random variables X1, X2, . . . . Let

F ′
n = σ(Xn, Xn+1, . . . ) = σ (∪∞

i=nσ(Xi))

be the smallest σ-algebra with respect to whichXn, Xn+1, . . . are measurable.
The tail σ-algebra is defined as T = ∩n≥1F ′

n.

Example 17.1. Let Bn be a sequence of Borel sets. Then {Xn ∈ Bn, i.o.} ∈
T . In particular, by letting Xn = 1An and Bn = {1}, we get {An, i.o.} ∈ T .

Example 17.2. Let Sn = X1+· · ·+Xn. Then {Sn converges to a finite limit} ∈
T but {lim supn→∞ Sn > 0} /∈ T . However, if cn is a sequence of real numbers
such that cn → ∞, then {lim supn→∞ Sn/cn > x} ∈ T .

Theorem 17.1 (Kolmogorov zero-one law). If X1, X2, . . . are independent
and A ∈ T , then P(A) = 0 or P(A) = 1.

Proof. We show that A is independent of itself if A ∈ T .

Step 1. Recall that Fn−1 = σ(X1, . . . , Xn−1) is generated by the π-system
of all the events B = {X1 ≤ x1, . . . , Xn−1 ≤ xn−1} for x1, . . . , xn−1 ∈ R.
Further, one can use Dynkin’s theorem to show that F ′

n is generated by the
π-system of all the events of the form1

C = {Xn ≤ xn, . . . , Xn+k ≤ xn+k}, k ∈ N, xn, . . . , xn+k ∈ R.

Clearly, any such sets B and C are independent and thus by Lemma 7.1,
Fn−1 and F ′

n are independent.

Step 2. We show that F ′
1 = σ(X1, X2, . . . ) is independent of T . First,

assume Ã ∈ Fk for some k. Since T ⊂ F ′
k+1, then from Step 1 we know that

1In general, given σ-algebras A1,A2, . . . , then σ(∪∞
i=1Ai) = σ(P) where P is the

π-system {∩i∈IAi : I ⊂ {1, 2, . . . }, Ai ∈ Ai, 1 ≤ |I| < ∞}.
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any event in T is independent of Ã, which implies T and Fk are independent
since Ã is arbitrary. Since both ∪n≥1Fn and T are π-systems, by Lemma 7.1
we have T and σ(X1, X2, . . . ) are independent.

Hence, we conclude that A is independent of itself, i.e. P(A ∩ A) =
P(A)P(A), which yields P(A) = 0 or 1.

Corollary 17.1. Let T be a tail σ-algebra generated by a sequence of inde-
pendent random variables. If a random variable Y is measurable w.r.t. T ,
i.e. Y ∈ T , then P(Y = c) = 1 for some c ∈ R.

Proof. Let FY be the distribution function of Y . Observe that FY (y) ∈ {0, 1}
for all y ∈ R by Kolmogorov zero-one law.

Example 17.3. Consider a sequence of independent random variables {Xn}n≥1.
Both lim infn→∞Xn and lim supn→∞ Xn are measurable w.r.t. T . Therefore,
with probability 1, lim infn→∞ Xn and lim supn→∞Xn are constants (note
they may be ±∞).

17.2 Convergence of random series

We say a (random) series converges if and only if it converges to a finite limit.

Theorem 17.2 (Lévy’s theorem). Let {Xn}n≥1 be a sequence of indepen-
dent random variables, then

∑∞
n=1Xn converges in probability if and only if∑∞

n=1Xn converges almost surely.

Proof. See Resnick [2, Theorem 7.3.2].

Theorem 17.3 (Kolmogorov’s maximal inequality). Let X1, . . . , Xn be in-
dependent with E[Xi] = 0 and Var(Xi) < ∞ for all i. Then,

P( max
1≤k≤n

|Sk| ≥ x) ≤ Var(Sn)

x2
.

Proof. See Durrett [1, Theorem 2.5.5].

Remark 17.1. This result is used in Kolmogorov’s proof for SLLN. Note
that we need the mutual independence among X1, X2, . . . . For comparison,
Chebyshev’s inequality yields P(|Sn| ≥ x) ≤ Var(Sn)/x

2.
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Theorem 17.4 (Kolmogorov convergence criterion). Suppose X1, X2, . . .
are independent with E[Xi] = 0 for all i and

∑∞
n=1Var(Xn) < ∞. Then,∑∞

n=1Xn converges a.s.

Proof. See Resnick [2, Theorem 7.3.3].

Theorem 17.5 (Kolmogorov’s three series theorem). Let X1, X2, . . . be in-
dependent. In order that

∑∞
n=1 Xn converges almost surely, it is necessary

and sufficient that for some c > 0,

(i)
∑∞

n=1 P(|Xn| > c) < ∞,

(ii)
∑∞

n=1E[Xn1{|Xn|<c}] converges (to a finite limit),

(iii)
∑∞

n=1Var(Xn1{|Xn|<c}) < ∞.

Proof of the “sufficiency” part in Theorem 17.5. Define Yn = Xn1{|Xn|<c}.
By Kolmogorov convergence criterion and condition (iii),

∑∞
n=1(Yn −E[Yn])

converges a.s. By condition (ii), it means that
∑∞

n=1 Yn converges a.s. By
Borel-Cantelli lemma and condition (i), P(Xn ̸= Yn, i.o.) = 0. Hence,∑∞

n=1Xn converges a.s.

For the “necessity” part, see the textbook.

Lemma 17.1 (Kronecker’s lemma). If an ↑ ∞ and
∞∑
n=1

(xn/an) converges,

1

an

n∑
k=1

xk → 0.

Proof. See Resnick [2, Lemma 7.4.1].

Theorem 17.6 (Kolmogorov’s SLLN). Let X1, X2, . . . be i.i.d. random vari-
ables with E|X1| < ∞ and mean µ. Then Sn/n

a.s.→ µ.

Proof. Again let’s define Yk = Xk1{|Xk|≤k} and Tn = Y1 + · · ·+ Yn and recall

that it suffices to show Tn/n
a.s.→ µ. Let Zk = Yk − E(Yk). Recall that

by Lemma 16.3,
∑∞

k=1 Var(Zk)/k
2 < ∞, which together with Theorem 17.4

implies that
∑∞

k=1 Zk/k converges a.s. By Kronecker’s lemma, this further
yields that n−1

∑n
k=1 Zk → 0, i.e.

Tn

n
− 1

n

n∑
k=1

E(Yk) → 0, a.s.

By DCT, E(Yk) → µ and thus n−1
n∑

k=1

E(Yk) → µ. Therefore, Tn/n
a.s.→ µ.
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17.3 Rates of convergence for LLN

Theorem 17.7. Let X1, X2, . . . be i.i.d. random variables with E[X1] = 0
and Var(X1) < ∞. Then for any ϵ > 0,

Sn√
n(log n)1/2+ϵ

a.s.→ 0.

Proof. Let an = n1/2(log n)1/2+ϵ for n ≥ 2. Observe that

∞∑
n=2

Var(Xn/an) =
∞∑
n=2

σ2

n(log n)1+2ϵ
< ∞.

(Check it! Hint: d log x = x−1dx.) By Theorem 17.4,
∞∑
n=1

Xn/an converges

a.s. Apply Kronecker’s lemma to conclude the proof.

Theorem 17.8. Let X1, X2, . . . be i.i.d. random variables with E[X1] = 0
and E|X1|p < ∞, where 1 < p < 2. Then Sn/n

1/p a.s.→ 0.

Proof. See Durrett [1, Theorem 2.5.12].

Theorem 17.9 (Law of iterated logarithm). Let X1, X2, . . . be i.i.d. random
variables with E[X1] = 0 and Var(X1) = 1. Then,

lim sup
n→∞

Sn√
2n log(log n)

= 1, a.s.

Proof. See Durrett [1, Theorem 8.5.2].

Remark 17.2. The law of iterated logarithm is usually treated in chap-
ters/books on random walks or Brownian motion. We can prove that

Sn√
2n log(log n)

P→ 0.

So,
√

n log(log n) is the rate at which the limit in probability and the almost
sure limit supremum/infimum are different. Another critical rate is

√
n.

We will see that the central limit theorem implies that Sn/
√
n converges in

distribution to a standard normal random variable.
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