
Lecture 14

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
6.3, 6.5 and 6.6 of Resnick [2] and Chapter 4.6 of Durrett [1].

14.1 More about almost sure convergence and conver-
gence in probability

All random variables mentioned below, i.e. X, {Xn}, Y, {Yn}, are assumed to
be defined on the same probability space (Ω,F ,P).

Proposition 14.1. Xn
P→ X if and only if every subsequence {Xnk

} contains
a further subsequence {Xnk(i)

} which converges almost surely to X.

Proof. See the textbook.

Remark 14.1. Suppose Xn
P→ X and Xn

a.s.→ X ′. By Proposition 14.1, there
is a subsequence Xnk

such that Xnk

a.s.→ X; that is, P({ω : limk→∞Xnk
(ω) =

X(ω)}) = 1. But by Proposition 0.5 (subsequence of a convergent real
sequence converges to the same limit), we also have P({ω : limk→∞Xnk

(ω) =
X ′(ω)}) = 1. Hence, by the union bound, X(ω) = X ′(ω), a.s.

Proposition 14.2. Some results from the continuous mapping theorem.

(i) If Xn
a.s.→ X, then f(Xn)

a.s.→ f(X) for any continuous function f .

(ii) If Xn
P→ X, then f(Xn)

P→ f(X) for any continuous function f .

(iii) If Xn
a.s.→ X and Yn

a.s.→ Y , then aXn + bYn
a.s.→ aX + bY for a, b ∈ R and

XnYn
a.s.→ XY .

(iv) If Xn
P→ X and Yn

P→ Y , then aXn + bYn
P→ aX + bY for a, b ∈ R and

XnYn
P→ XY .

Proof of part (i). If Xn(ω) → X(ω), then by continuity we have f(Xn(ω)) →
f(X(ω)). Since Xn → X a.s., we have f(Xn)

a.s.→ f(X).

Proof of part (ii). Apply Proposition 14.1 and Proposition 14.2 (i).
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Proof of the remaining part(s). Try it yourself.

Theorem 14.1 (Dominated convergence theorem). If Xn
P→ X and there

exists an integrable random variable Z such that |Xn| ≤ Z for all n, then
E(Xn) → E(X).

Proof. The proof relies on a fact from analysis: if each subsequence of (an)n≥1

contains a further subsequence that converges to a, then an converges to a.
(You can prove it by contradiction.) Now you can prove Theorem 14.1 using
Proposition 14.1.

14.2 Uniform integrability

Definition 14.1. Let {Xt : t ∈ T} be a family of integrable random variables
(i.e. E|Xt| < ∞). We say this family is uniformly integrable if as M → ∞,
we have

sup
t∈T

E
(
|Xt|1{|Xt|>M}

)
= sup

t∈T

∫
{|Xt|>M}

|Xt|dP → 0.

Proposition 14.3. If there exists a random variable Z such that E|Z| <∞
and |Xt| ≤ Z for every t, then {Xt} is uniformly integrable.

Proof. For every t, we have∫
{|Xt|>M}

|Xt|dP ≤
∫
{|Xt|>M}

|Z|dP ≤
∫
{|Z|>M}

|Z|dP.

Hence, we only need to prove that if E|Z| < ∞, then
∫
{|Z|>M} |Z|dP → 0 as

M → ∞. To show this, let YM(ω) = |Z(ω)|1{|Z(ω)|>M}, which is dominated
by |Z|. Since E|Z| <∞, by the dominated convergence theorem, we have∫

{|Z|>M}
|Z|dP =

∫
YM dP →

∫
lim

M→∞
YM dP =

∫
0 dP = 0,

which concludes the proof.

Remark 14.2. Proposition 14.3 implies that if E(supt∈T |Xt|) < ∞, then
{Xt}t∈T is uniformly integrable. If {Xt}t∈T is uniformly integrable, then
there exists M < ∞ such that supt

∫
{|Xt|>M} |Xt|dP ≤ ϵ for some constant

ϵ > 0, which implies that

sup
t
E|Xt| ≤ sup

t

∫
(1{|Xt|>M}|Xt|+M)dP ≤M + ϵ <∞.
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Corollary 14.1. If E|Xt| <∞ for each t and the index set T is finite, then
{Xt} is uniformly integrable.

Proof. Try it yourself.

Proposition 14.4. Consider two families of integrable random variable {Xt :
t ∈ T} and {Yt : t ∈ T}. If |Xt| ≤ |Yt| for each t and {Yt} is uniformly
integrable, then {Xt} is uniformly integrable.

Proof. Try it yourself.

Theorem 14.2 (Crystal ball condition). For any p > 0, the family {|Xt|p}
is uniformly integrable if supnE|Xn|p+δ <∞ for some δ > 0.

Proof. Try it yourself.

Theorem 14.3. A family of integrable random variables {Xt : t ∈ T} is
uniformly integrable if and only if the following two conditions are satisfied:
(i) for any ϵ > 0, there exists δ = δ(ϵ) such that for any A ∈ F with
P(A) < δ, we have supt∈T

∫
A
|Xt| dP < ϵ; (ii) supt∈T E|Xt| <∞.

Proof. See the textbook.

Example 14.1. Let {Xn} be a sequence of random variables with P(Xn =
n) = 1/n and P(Xn = 0) = 1 − 1/n. Clearly, supE|Xn| = 1. However, this
family is not uniformly integrable because∫

{Xn>M}
Xn dP =

{
1 if M ≤ n,
0 if M > n,

which yields supn≥1

∫
{Xn>M}Xn dP = 1 for every M .

14.3 More about convergence in Lp

Theorem 14.4 (Scheffe’s lemma). Xn
L1

→ X if and only if

sup
A∈F

∣∣∣∣∫
A

(Xn −X) dP

∣∣∣∣ → 0.
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Proof. First, assume Xn
L1

→ X. Then, without loss of generality, we may
assume Xn −X is integrable. Hence,

sup
A∈F

∣∣∣∣∫
A

(Xn −X) dP

∣∣∣∣ ≤ sup
A∈F

∫
A

|Xn −X| dP

≤
∫
Ω

|Xn −X| dP

= E|Xn −X| → 0.

To prove the converse, note that

E|Xn −X| =
∫
{Xn>X}

(Xn −X) dP+

∫
{Xn≤X}

(X −Xn) dP

≤
(
sup
A

∫
A

(Xn −X) dP

)
+

(
sup
A

∫
A

(X −Xn) dP

)
≤ 2 sup

A

∣∣∣∣∫
A

(Xn −X) dP

∣∣∣∣ .
Hence, if the right-hand side converges to 0, Xn

L1

→ X.

Corollary 14.2. If Xn
L1

→ X and E|X| <∞, then E(Xn) → E(X).

Proof. Try it yourself.

Proposition 14.5. Suppose p ∈ [1,∞). If Xn
Lp

→ X and E|Xn|p < ∞ for
every n, then E|Xn|p → E|X|p and E|X|p <∞.

Proof. Since Xn
Lp

→ X, there exists some k such that ∥X−Xk∥p ≤ 1. By the
triangle inequality, this implies E|X|p <∞.

By the reverse triangle inequality, |∥Xn∥p − ∥X∥p| ≤ ∥Xn−X∥p for each
n; that is, ∣∣∣(E|Xn|p)1/p − (E|X|p)1/p

∣∣∣ ≤ (E|Xn −X|p)1/p → 0,

which implies E|Xn|p → E|X|p.

Theorem 14.5. Suppose p ∈ [1,∞) and {Xn} is a sequence of random

variables such that E|Xn|p < ∞ for all n. Then Xn
Lp

→ X if and only if (i)

{|Xn|p} is uniformly integrable and (ii) Xn
P→ X.
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Proof. We divide the proof into two parts.

The “only if” part. Recall that the Lp convergence implies Xn
P→ X.

Hence, we only need to show that {Xn} is uniformly integrable. For any
M > 0, define a continuous function ψM by

ψM(x) =


x if x ∈ [0,M − 1],

linear if x ∈ [M − 1,M ],
0 if x ∈ [M,∞).

Notice that |x|p − ψM(|x|)p ≥ |x|p1{|x|>M} for any x and thus∫
{|Xn|>M}

|Xn|p dP ≤
∫

{|Xn|p − ψM(|Xn|)p} dP = E|Xn|p − E[ψM(|Xn|)p]

≤ {E|Xn|p − E|X|p}+ {E|X|p − E[ψM(|X|)p]}+ {E[ψM(|X|)p]− E[ψM(|Xn|)p]} .

We now bound the three terms in the last line separately.

(i) Observe that ψM(y) → y pointwise as M → ∞. Further, ψM(y) ≤ y.
Applying the dominated convergence theorem, we get E|ψM(|X|)p| →
E|X|p (note that by Proposition 14.5, E|X|p < ∞.) Hence, for any
ϵ > 0, we can find a sufficiently large M1 such that

E|X|p − E|ψM1(|X|)p| ≤ ϵ/3.

(ii) Let M be fixed and n → ∞, then ψM(|Xn|)p
P→ ψM(|X|)p since ψM is

continuous. Since ψM(|Xn|)p ≤ (M − 1)p, by Theorem 14.1, we have
E[ψM(|Xn|)p] → E[ψM(|X|)p] as n → ∞. Therefore, we can also find
a sufficiently large N1 = N1(M) such that for all n ≥ N1,

E[ψM(|X|)p]− E[ψM(|Xn|)p] ≤ ϵ/3.

(iii) By Proposition 14.5, we have E|Xn|p → E|X|p and thus there exists
N2 <∞ such that for all n ≥ N2,

E|Xn|p − E|X|p ≤ ϵ/3.

Choose N0 = max{N1(M1), N2}. Then for any n ≥ N0, we have∫
{|Xn|>M1}

|Xn|p dP ≤ ϵ.
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Since N0 is finite and E|Xn|p <∞ for all n, there exists M2 <∞ such that∫
{|Xn|>M2}

|Xn|p dP ≤ ϵ, for n = 1, . . . , N0 − 1.

Hence, if we set M0 = (max{M1,M2})p, we get

sup
n≥1

∫
{|Xn|p>M0}

|Xn|p dP ≤ ϵ.

Since the choice of ϵ > 0 is arbitrary, we conclude that the family {|Xn|p} is
uniformly integrable.

The “if” part. The proof is similar to that for the “only if” part. Define a
function φM by

φM(x) =


M if x ≥M,
x if |x| < M,

−M if x ≤ −M.

Some algebra and the triangle inequality yield

∥Xn −X∥p

≤ ∥φM(Xn)− φM(X)∥p +
(∫

{|Xn|>M}
|Xn|pdP

)1/p

+

(∫
{|X|>M}

|X|pdP
)1/p

.

Then bound the three terms on the right-hand side separately. To show
E|X|p <∞ and then bound the last term, one can use the following version of

Fatou’s lemma: If Yn ≥ 0 and Yn
P→ Y , then lim infn→∞E(Yn) ≥ E(Y ).
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