Lecture 13

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
6.1, 6.2 and 8.5 of Resnick [I].

13.1 Convergence modes

Definition 13.1. Let {X,,},>1 be a sequence of random variables defined
on a probability space (€2, F,P), and X be another random variable defined
on the same space.

(i) We say X,, converges almost surely to X if P(lim, .. X,, = X) = 1,
and we write X,, 3 X.

(ii) We say X, converges in probability to X if lim,,_,., P(|X,,—X]| >¢€) =0
for any € > 0, and we write X, 5 X,

(iii) We say X,, converges in LP to X if lim, .., E|X, — X[’ = 0, and we
write X, 2 X.

Definition 13.2. Let X be a random variable with distribution function F,
and {X, },>1 be a sequence of random variables where X,, has distribution
function F,,. We say X,, converges in distribution (or converges weakly) to
X if limy, 00 () = F(x), for every x € R at which F' is continuous. We

write X, 2> X.

Remark 13.1. For convergence in distribution, random variables X, X, Xs, ...
can be defined on different probability spaces.

Example 13.1. Let Z;,7Z;,... be i.i.d. Bernoulli random variables with
P(Z; =0) =pand P(Z;, = 1) = 1—p, where p € (0,1). Define X, =
max{Z,...,Z,}. Then X, “¥ 1. Note that for any n < oo, P(X,, < 1) =
p" > 0.

Example 13.2. Consider a sequence of random variables X, X, ... such
that P(X,, = n) = 1/n and P(X,, =0) = 1 —1/n. Then X, L 0 since, for
any € > 0, P(|X,,| > €) = 1/n and converges to 0. But F[X,] =1 for every
n. Hence, X,, does not converge to 0 in L'. Indeed, X,, does not converge in
L? for any p > 1.
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Example 13.3 (Continuation of Example[13.2)). Recall how we constructed
such a sequence of random variables in Example 5.1: consider the probability
space ([0, 1], B(]0,1]),m) where m denotes the Lebesgue measure and define

X, (w) = { n, if we (0,1/n),

0, otherwise.

Then for every w, we have lim,,_,o X,(w) = 0, i.e. X, 23 0.

Example 13.4 (Continuation of Example . However, if we assume
X1, Xy,... are independent, then the sequence {X,} does not converge al-
most surely. We do not prove this claim here. Let’s consider another con-
struction which does not converge almost surely either. We still consider the
probability space ([0, 1], B([0, 1]),m). Let’s construct X, Xs, ... as follows:

X1 =1y, Xo=2N,1/2), X3=3L(1/25/6), X4 =4 (1(5/6,1) + IL(0,1/12)) o

See the figure on the next page, which plots Xi, Xo,..., X50. So if X, (w)
converges almost surely to zero, then there must exist some integer N < oo
such that Y >° 1/n < 1. But this is impossible.

Example 13.5. Consider the probability space ([0, 1], B([0,1]), m) again.
This time let’s define a sequence of random variables by

X1 =10, Xo=Tausm,
X3 =113, Xa=TLasmzm, Xs=I1Lgsm,
Xo = Lo,1/0), X7=1Lqa1s2, Xs= L@y, Xo=Liu)...

We do not plot these functions here, but one can check that X, does not
converge to 0 almost surely. However, for any p € (0,00), E| X, [P = P(X,, =

1) — 0; that is, X,, 2 0.
Example 13.6. Recall the Weak Law of Large Numbers (WLLN). If X7, X, ...
is an i.i.d. sequence of random variables with F(X;) = u and Var(X;) = 02 <
0o. Then X, £ 1.

Example 13.7. Let F' be a distribution function for some continuous random
variable. Define F,(x) = F(z + n) (check this is a distribution function!)
Clearly, F,(z) — 1 for every z € R since lim, ,,, F(z) = 1. So {F,} is
convergent but the limit is not a distribution function.
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Example 13.8. Let X be a Bernoulli random variable with P(X = 0) =
P(X = 1) = 1/2 and define a sequence of random variables X7, Xs,... by

letting X,, = X. Clearly X,, 5 x (and it also converges in probability and
almost surely.) Now let Y = 1 — X. Clearly, Y is another random variable

with the same distribution as X and thus X,, 2 Y. However, {X,} does not
converge in probability to Y since | X, (w) — Y (w)| =1 for any n and w.

13.2 Relations among modes of convergence

Theorem 13.1. Let { X, },>1, X be defined on the same probability space.
(i) If X, “3 X, then X,, 5 X.
(ii) If X, & X, then X, B X.

(1ii) If X, %X for some p > 0, then X, 2 x.
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(iv) [anngorsomep>O, theanng0r0<r§p.

Proof of part (@) Almost sure convergence means that the event {lim,, ., X, =
X} has probability 1, which implies that, for any ¢ > 0, the event

B, ={|X,, — X| > ¢ for infinitely many X, }

has probability zero. Recall that given a sequence of sets { A, }, we have that
w € limsup,,_,, A, if and only if w occurs in infinitely many A,,. Hence, we
can write B, = limsup,,_,. {| X, — X| > €} and obtain

0= P(limsup{|X, — X| > €}) =P (ﬂ X - x| > e}) .

n—oo n>1k>n
By the continuity and monotonicity of measures,

(MU -0 = i e (Ut x120)

n>1k>n k>n

> limsup P(|X,, — X| > e).

n—oo

Hence, for any € > 0, we have limsup P(]X,, — X| > ¢) = 0. But this means

n—oo

X, 5 x. O

Proof of part (id). Consider arbitrary z € R and € > 0. If X,, < z, then we
have either | X,, — X| > e or X <z + €. Hence,

{X, <z} Cc{X -z <t U{|X, - X|> €}
This implies

Fo(z) =P(X, <2)<P(X —z<¢e)+P(X,— X]|>¢)
= F(z+¢€) +P(|X, — X| >e).

Similarly, {X <z —e€} C {X,, <z} U{|X, — X]| > €} and thus
F(x —¢) < F,(z) + P(| X, — X| > ¢).

Letting n go to infinity and using the assumption that X, A x , we obtain

F(x —¢) <liminf F,,(z) <limsup F,(z) < F(z +¢€).
n—oo

n—o0
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If F(x) is continuous at x, then lim, o F(x — €) = lim o F(z + €) = F(x),
which yields

F(x) = lim F,(z).

Hence, X, 5 X, O
Proof of part . By Markov inequality,

E|X, — XP
P(I X, — X[ >¢€) =P(|X,, = X[P > ¢) < | p | ’
€
which converges to zero for any given € > 0. Hence, X, 5 x. O

Proof of part . Recall that for p > r and a random variable Z, we have
| Z||zr > || Z]| - (see Example 10.3). Hence,

E|X, — X|" > (E|X, — X|")"/" > 0.

Since E|X,, — X|P — 0, we have E|X,, — X|" — 0. O
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