Lecture 11

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
2.2 and 2.3 of Vershynin [I].

11.1 Some concentration inequalities

In this section, we assume X, X,... are i.2.d. random variables with ex-
pectation u. Let X,, denote the average of the first n random variables.

Lemma 11.1. Let Z be a random variable with mean 0 and variance o?.

(i) Hoeffding’s lemma: If Z € [a,b], then E[e*?] < eX=9*/8 for X > 0.
(i) If |Z] < K, then for 0 < A < 3/K,

B[] < exp (%) |

(iii) If |Z) < K, E[e*] < exp {;—“;(ew 1 )\K)} for A > 0.

Proof. To prove part (i), note that e** is a convex function in z and thus for
any z € [a, bl

b— 2z Z—a
Az< eAa+ 6>\b.

¢ “b—a b—a

Taking expectation on both sides and using E[Z] = 0, we get

E[M] < . b o . @ N —N0(b-a) (1-0+ Hex(b—a)) ’
—a —a

where § = —a/(b—a). Let u = A(b — a) and consider

P(u) = —0u +log(l — 0+ 0e"), u>0.

Direct calculation yields that 1(0) = ¢/(0) = 0 and " (u) < 1/4 for every u.
Hence, by Taylor theorem (and the mean-value form for the remainder),
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for some v € [0, u]. Therefore, ¥(u) < u?/8 for u > 0 and
E[e’\Z] < et (w) < A2 (b—a)?/8

To prove part (ii), first we verify that for |z| < 3,

2?2/2
2 <1 _—.
RN BB
This can be shown by Taylor expansion:
e —1—2z =22 S & |z|k*2 1
ol T T < < .
R D ]

Then, taking expectation on both sides and using e* > 1 + z, we find that

\272/2 \272/2
EleM < E _ <FE _
< o (Z504m) | < 2 o (7587 |
provided that A < 3/K (so that A\|Z| < 3.)
To prove part (iii), apply Taylor expansion to obtain that, for z € (=K, K),

0 >\ N\ 2|, |n—2
BAZ:1+)\Z+Z —|Z|
n=2
< . \ A\ 2Kn 2 _ \ NI &

52

Taking expectation on both sides, we get
o2 o2
E (et )<1+ﬁ( —1—/\K)§6Xp{ﬁ(e>\K_1_>\K)}7

which completes the proof. O

Theorem 11.1 (Hoeffding’s inequality). If X; € [m, M| (i.e. bounded),

2nt?
P(Xn—uzt)ﬁexp(— -

). ez
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Proof. We use the Chernoff bound. For any A > 0,

P(X,—u>t)="P {e)‘(X”_“) > e)‘t}

< e ME [GA(X,L—M)}

— 67)\15 E |:€)\(Xif,u)/n] ’
Il

where the last equality follows from the independence between X,..., X,,.
Now we apply Hoeffding’s lemma to obtain

- " A2(M —m)? N (M —m)?
—Xt _
This inequality holds for any A > 0. We should choose the best one (i.e. the
one that minimizes the upper bound), which is given by

Ant
(M —m)?’

for every ¢t > 0. The result then follows. ]

A=

Theorem 11.2 (Bernstein’s inequality). Suppose E[X;] = p =0, Var(X;) =
o? and | X;| < K. Then,

nt?/2
o2+ Kt/3

Proof. Applying Chernoff bound with Lemma m (ii), we obtain

P(X,>1t) < exp{%%) — )\t}.

P(X, >1t) <exp (— ), vVt > 0.

1 —AK/(3n
for 0 < A < 3n/K. Let’s further assume 1 — AK/3n > ¢. Then,
\2o?/2n A2
———— A< — At = f(A).
1—-\K/3 ~ 2nc JA)
. o 2 . . t*cn
f(A) is maximized at A\* = tcn/o?, which gives f(\*) = YR Thus,
o
> t?cn
P(X, >t < - 0. 1
oz <o {55 0
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However, the choice of ¢ is not arbitrary and must satisfy

B MK
3n

1 > c.

Some algebra yields that this is equivalent to ¢ < {Kt/(30?%) + 1}71 = ¢*.
Plugging ¢* black into (1]}, we obtain the asserted inequality. O]

Theorem 11.3 (Bennett’s inequality). Under the same assumption as Bern-
stein’s inequality, we also have

_ 2 Kt
P(X, >t) < exp (—ﬂ h <—>) . Vt>0,

o2
where h(z) = (1 +z)log(l + z) — x.
Proof. By Chernoff bound and Lemma [I1.1] (iii),

_ 2 K
P(X,>1t) < exp{% (e’\K/” —-1- )\—) — )\t}.
n

By differentiating the exponent and setting it to zero, we get

L, N tK
A :Elog(lJr?).

Some routine algebra then yields the asserted inequality. O]

Example 11.1. Consider a triangular array {Y,, ;. : 1 < k <n, n > 1} where
for each n, Y, 1,..., Y, are i.id. with P(Y,x, =n) =1/nand P(Y,, =0) =
1—1/n. Define Y,, = (Y1 + -+ Y,,,)/n for each n (i.e., the average of the
n-th row). It is straightforward to compute that

n—1

EY,i]=1, Var(Y,,)=n-1, E[Y,]=1, Var(V,) = -

Hence, Var(Y},) is asymptotically equal to 1. Observe that

Y, — E[Y _
P<| n [ n” Zn_1> ZP(Yn:n):n_nze_nbgn,

/ Var(Y,

which is a slower rate than e~ for any ¢ > 0.
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To apply the three concentration inequalities, we first center the ran-
dom variables by letting X, = Y, — 1. Then, | X, x| < K =n —1 and
Var(X, ;) = 0 =n — 1. So we obtain that

Hoeffding:

Bernstein:

Bennett:

t) S e—2t2/n7

P(Xx

- n o t*/2

v

P(X, >1t) <exp (—%[(1 +t)log(1+1t) — t]) :

Now choose t = n, and one can check that only Bennett’s inequality gives

the right order.
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