
Lecture 11

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
2.2 and 2.3 of Vershynin [1].

11.1 Some concentration inequalities

In this section, we assume X1, X2, . . . are i.i.d. random variables with ex-
pectation µ. Let X̄n denote the average of the first n random variables.

Lemma 11.1. Let Z be a random variable with mean 0 and variance σ2.

(i) Hoeffding’s lemma: If Z ∈ [a, b], then E[eλZ ] ≤ eλ
2(b−a)2/8 for λ > 0.

(ii) If |Z| ≤ K, then for 0 < λ < 3/K,

E
[
eλZ
]
≤ exp

(
λ2σ2/2

1− λK/3

)
.

(iii) If |Z| ≤ K, E[eλZ ] ≤ exp
{
σ2

K2 (e
λK − 1− λK)

}
for λ > 0.

Proof. To prove part (i), note that eλz is a convex function in z and thus for
any z ∈ [a, b],

eλz ≤ b− z

b− a
eλa +

z − a

b− a
eλb.

Taking expectation on both sides and using E[Z] = 0, we get

E[eλZ ] ≤ b

b− a
eλa − a

b− a
eλb = e−λθ(b−a)

(
1− θ + θeλ(b−a)

)
,

where θ = −a/(b− a). Let u = λ(b− a) and consider

ψ(u) = −θu+ log(1− θ + θeu), u ≥ 0.

Direct calculation yields that ψ(0) = ψ′(0) = 0 and ψ′′(u) ≤ 1/4 for every u.
Hence, by Taylor theorem (and the mean-value form for the remainder),

ψ(u) =
1

2
ψ′′(v)
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for some v ∈ [0, u]. Therefore, ψ(u) ≤ u2/8 for u ≥ 0 and

E[eλZ ] ≤ eψ(u) ≤ eλ
2(b−a)2/8.

To prove part (ii), first we verify that for |z| < 3,

ez ≤ 1 + z +
z2/2

1− |z|/3
.

This can be shown by Taylor expansion:

2
ez − 1− z

z2
=

∞∑
k=2

zk−2

k!/2
≤

∞∑
k=2

|z|k−2

k!/2
≤

∞∑
k=2

|z|k−2

3k−2
=

1

1− |z|/3
.

Then, taking expectation on both sides and using ex ≥ 1 + x, we find that

E[eλZ ] ≤ E

[
exp

(
λ2Z2/2

1− λ|Z|/3

)]
≤ E

[
exp

(
λ2Z2/2

1− λK/3

)]
,

provided that λ < 3/K (so that λ|Z| ≤ 3.)
To prove part (iii), apply Taylor expansion to obtain that, for z ∈ (−K,K),

eλz = 1 + λz +
∞∑
n=2

λnzn

n!
≤ 1 + λz +

∞∑
n=2

λnz2|z|n−2

n!

≤ 1 + λz +
∞∑
n=2

λnz2Kn−2

n!
= 1 + λz +

z2

K2

∞∑
n=2

λnKn

n!

= 1 + λz +
z2

K2
(eλK − 1− λK).

Taking expectation on both sides, we get

E
(
eλZ
)
≤ 1 +

σ2

K2

(
eλK − 1− λK

)
≤ exp

{
σ2

K2
(eλK − 1− λK)

}
,

which completes the proof.

Theorem 11.1 (Hoeffding’s inequality). If Xi ∈ [m,M ] (i.e. bounded),

P(X̄n − µ ≥ t) ≤ exp

(
− 2nt2

(M −m)2

)
, ∀ t ≥ 0.

2
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Proof. We use the Chernoff bound. For any λ > 0,

P(X̄n − µ ≥ t) = P
{
eλ(X̄n−µ) ≥ eλt

}
≤ e−λtE

[
eλ(X̄n−µ)

]
= e−λt

n∏
i=1

E
[
eλ(Xi−µ)/n

]
,

where the last equality follows from the independence between X1, . . . , Xn.
Now we apply Hoeffding’s lemma to obtain

P(X̄n − µ ≥ t) ≤ e−λt
n∏
i=1

exp

(
λ2(M −m)2

8n2

)
= exp

{
λ2(M −m)2

8n
− λt

}
.

This inequality holds for any λ > 0. We should choose the best one (i.e. the
one that minimizes the upper bound), which is given by

λ∗ =
4nt

(M −m)2
,

for every t ≥ 0. The result then follows.

Theorem 11.2 (Bernstein’s inequality). Suppose E[Xi] = µ = 0, Var(Xi) =
σ2 and |Xi| ≤ K. Then,

P(X̄n ≥ t) ≤ exp

(
− nt2/2

σ2 +Kt/3

)
, ∀ t ≥ 0.

Proof. Applying Chernoff bound with Lemma 11.1 (ii), we obtain

P(X̄n ≥ t) ≤ exp

{
λ2σ2/2n

1− λK/(3n)
− λt

}
.

for 0 < λ < 3n/K. Let’s further assume 1− λK/3n ≥ c. Then,

λ2σ2/2n

1− λK/3
− λt ≤ λ2σ2

2nc
− λt = f(λ).

f(λ) is maximized at λ∗ = tcn/σ2, which gives f(λ∗) = −t
2cn

2σ2
. Thus,

P(X̄n ≥ t) ≤ exp

{
−t

2cn

2σ2

}
. (1)
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However, the choice of c is not arbitrary and must satisfy

1− λ∗K

3n
≥ c.

Some algebra yields that this is equivalent to c ≤ {Kt/(3σ2) + 1}−1 = c∗.
Plugging c∗ black into (1), we obtain the asserted inequality.

Theorem 11.3 (Bennett’s inequality). Under the same assumption as Bern-
stein’s inequality, we also have

P(X̄n ≥ t) ≤ exp

(
−nσ

2

K2
h

(
Kt

σ2

))
, ∀ t ≥ 0,

where h(x) = (1 + x) log(1 + x)− x.

Proof. By Chernoff bound and Lemma 11.1 (iii),

P(X̄n ≥ t) ≤ exp

{
nσ2

K2

(
eλK/n − 1− λK

n

)
− λt

}
.

By differentiating the exponent and setting it to zero, we get

λ∗ =
n

K
log

(
1 +

tK

σ2

)
.

Some routine algebra then yields the asserted inequality.

Example 11.1. Consider a triangular array {Yn,k : 1 ≤ k ≤ n, n ≥ 1} where
for each n, Yn,1, . . . , Yn,n are i.i.d. with P(Yn,k = n) = 1/n and P(Yn,k = 0) =
1− 1/n. Define Ȳn = (Yn,1 + · · ·+ Yn,n)/n for each n (i.e., the average of the
n-th row). It is straightforward to compute that

E[Yn,1] = 1, Var(Yn,1) = n− 1, E[Ȳn] = 1, Var(Ȳn) =
n− 1

n
.

Hence, Var(Ȳn) is asymptotically equal to 1. Observe that

P

(
|Ȳn − E[Ȳn]|√

Var(Ȳn)
≥ n− 1

)
≥ P(Ȳn = n) = n−n = e−n logn,

which is a slower rate than e−cn
2
for any c > 0.
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To apply the three concentration inequalities, we first center the ran-
dom variables by letting Xn,k = Yn,k − 1. Then, |Xn,k| ≤ K = n − 1 and
Var(Xn,k) = σ2 = n− 1. So we obtain that

Hoeffding: P(X̄n ≥ t) ≤ e−2t2/n,

Bernstein: P(X̄n ≥ t) ≤ exp

(
− n

n− 1

t2/2

1 + t/3

)
,

Bennett: P(X̄n ≥ t) ≤ exp

(
− n

n− 1
[(1 + t) log(1 + t)− t]

)
.

Now choose t = n, and one can check that only Bennett’s inequality gives
the right order.

References

[1] Roman Vershynin. High-dimensional probability: An introduction with
applications in data science, volume 47. Cambridge university press, 2018.

5


	Some concentration inequalities

