
Lecture 0

Instructor: Quan Zhou

We will not go through the materials covered in this note in class, since
you should have already learned them from an introductory real analysis
course. A good understanding of the following basic concepts and results is
necessary to the successful completion of the course.

0.1 Basic set theory

Definition 0.1. Cardinality of a set.

(i) If there exists a bijection from the set A to {1, 2, . . . , n} for some natural
number n, we say A is finite.

(ii) If there exists a bijection from the set A to all natural numbers N =
{0, 1, 2, . . . , }, we say A is a countably infinite.

(iii) We say A is countable if it is finite or countably infinite.

(iv) We say A is uncountable if it is not countable.

Example 0.1. The set of all real numbers, R, is uncountable. The set of all
rational numbers, Q, is countable.

Definition 0.2. Some basic definitions in set theory.

(i) If ω is an element in A, we write ω ∈ A. If A is a subset of B (i.e. every
element in A is also in B), we write A ⊂ B (note that A may equal B.)

(ii) Complement of A: Ac = {ω ∈ Ω: ω /∈ A}.

(iii) Set difference: A \B = {ω : ω ∈ A and ω /∈ B}.

(iv) Intersection:
⋂
t∈T

At = {ω ∈ Ω: ω ∈ At, ∀ t ∈ T}.

(v) Union:
⋃
t∈T

At = {ω ∈ Ω: ∃ t ∈ T, s.t. ω ∈ At}.

(vi) {At : t ∈ T} is pairwise disjoint (or mutually disjoint) if whenever
t, t′ ∈ T and t ̸= t′, we have At ∩ At′ = ∅.
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Theorem 0.1. An arbitrary (finite, countable or uncountable) union of open
sets is open, and the intersection of a finite number of open sets is open.

Example 0.2. The intersection of an infinite number of open sets can be
closed, e.g.

⋂∞
n=1(−1/n, 1/n) = {0}. Similarly, the union of an infinite

number of closed sets can be open, e.g.
⋃∞

n=2[1/n, 1− 1/n] = (0, 1).

Remark 0.1. In this course, when we use the terms “open sets” and “closed
sets”, usually we are referring to open and closed intervals of R. So we do
not need the definition of “open sets” in more general contexts.

Proposition 0.1. Algebra of sets.

(i) Associative law: (A ∪B) ∪ C = A ∪ (B ∪ C).

(ii) Distributive law: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(iii) De Morgan’s laws: (∪At)
c = ∩(Ac

t) and (∩At)
c = ∪(Ac

t).

0.2 Sequences and their limits

Let (an)n≥1 and (bn)n≥1 be sequences of real numbers; i.e., an ∈ R and bn ∈ R
for each n.

Definition 0.3. We say the limit of (an)n≥1 exists and write limn→∞ an = a
if a ∈ R and for any ϵ > 0, there exists some Nϵ < ∞ such that |an − a| < ϵ
for all n ≥ Nϵ.

Proposition 0.2 (Limit laws). Suppose limn→∞ an = a and limn→∞ bn = b.
Then the following formulae hold.

(i) limn→∞(an + bn) = a+ b.

(ii) limn→∞(anbn) = ab.

(iii) limn→∞(c an) = ac for any c ∈ R.

(iv) If an > 0 for each n and a > 0, limn→∞ a−1
n = a−1.

(v) limn→∞ max(an, bn) = max(a, b).

(vi) limn→∞ min(an, bn) = min(a, b).
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Definition 0.4. For any A ⊂ R, we define sup(A) as follows.

◦ If A is empty, let sup(A) = −∞.

◦ If A is non-empty and has no upper bound, let sup(A) = ∞.

◦ If A is non-empty and has an upper bound, let sup(A) be the least
upper bound of A.

Define the infimum of A by inf(A) = − sup{x : − x ∈ A}. For the real
sequence (an)n≥1, define its supremum by supn≥1 an = sup{an : n ≥ 1}.

Definition 0.5. Let R̄ = R ∪ {−∞,∞} denote the extended real number
system. For any A ⊂ R̄, we define its supremum by

supA =

{
∞, if ∞ ∈ A,

sup(A \ {−∞}), if ∞ /∈ A.

Theorem 0.2 (Monotone convergence theorem). Let (an)n≥1 be a monotone
increasing sequence, i.e., an+1 ≥ an for each n. If supn≥1 an < ∞, then
limn→∞ an exists and limn→∞ an = supn≥1 an.

Remark 0.2. For a monotone increasing sequence (an)n≥1 with supn≥1 an =
∞, we adopt the convention that limn→∞ an is defined to be ∞, though we
still say an diverges in this case.

Definition 0.6. The limit supremum and limit infimum of an are defined by

lim sup
n→∞

an = inf
n≥1

sup
m≥n

am, lim inf
n→∞

an = sup
n≥1

inf
m≥n

am.

Remark 0.3. Note that bn = infm≥n am is a monotone increasing sequence,
and thus the limit of bn exists by the monotone convergence theorem (the
limit may be ∞). So the names “limit infimum” and “limit supremum” are
justified.

Proposition 0.3. We always have lim inf an ≤ lim sup an. Further, an con-
verges to some real number c if and only if lim sup an = lim inf an = c.

Proposition 0.4 (Comparison principle). Suppose an ≤ bn for each n.
Then, we have

sup an ≤ sup bn, inf an ≤ inf bn,

lim sup an ≤ lim sup bn, lim inf an ≤ lim inf bn.

3



Fall 2022 Quan Zhou

Remark 0.4. The squeeze theorem (i.e., sandwich theorem) can be seen as
a corollary of the comparison principle.

Proposition 0.5. Let a ∈ R. Then, an converges to a if and only if every
subsequence of an converges to a.

0.3 Series

Given a sequence an of real numbers, we can use the expression
∑∞

n=1 an to
denote a series, which is a sum of (countably) infinitely many terms.

Definition 0.7. Let Sn =
∑n

i=1 ai for each n. If limn→∞ Sn = A ∈ R, we
say the series

∑∞
i=1 ai is convergent and write

∑∞
i=1 ai = A. We say

∑∞
i=1 ai

is absolutely convergent if the series
∑∞

i=1 |ai| is convergent.

Remark 0.5. By Theorem 0.2 and Remark 0.2, if an ≥ 0 for each n, then∑∞
i=1 an is always defined and may equal ∞.

Proposition 0.6. Let p denote a real number. The series
∑∞

n=1 n
−p is con-

vergent if and only if p > 1.

Proposition 0.7 (Series laws). Suppose
∑∞

i=1 ai = A and
∑∞

i=1 bi = B for
some A,B ∈ R. Then the following statements hold.

(i)
∑∞

i=1(ai + bi) = A+B.

(ii)
∑∞

i=1 c ai = cA for any c ∈ R.

(iii) A =
∑k

i=1 ai +
∑∞

i=k+1 ai for any k ∈ N. (Note that the convergence of
the series

∑∞
i=k+1 ai is part of the conclusion.)

Proposition 0.8. If the series
∑∞

i=1 ai is absolutely convergent, then its
value does not depend on the order of the summation; any rearrangement of
the terms a1, a2, . . . still yields an absolutely convergent series.

Example 0.3. Consider the series 1/3−1/4+1/5−1/6+1/7−1/8+ . . . . It
is convergent but not absolutely convergent. The current arrangement yields
a positive sum. But a rearrangement of the series, 1/3− 1/4− 1/6 + 1/5−
1/8− 1/10 + 1/7− 1/12− 1/14 + . . . , yields a negative sum.
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0.4 Functions and their limits

Consider a function f : R → R.

Definition 0.8. We write limx↓x0 f(x) = y if for any ϵ > 0, there exists
δϵ > 0 such that |f(x)− y| < ϵ for all x ∈ (x0, x0 + δϵ). We call limx↓x0 f(x)
the right limit of f at x0 and denote it by f(x0+). The left limit f(x0−) is
defined similarly. When f(x0+), f(x0−) both exist and are equal to y, we
write limx→x0 f(x) = y.

Definition 0.9. We have the following definitions.

(i) We say f is continuous at x0 ∈ R if limx→x0 f(x) = f(x0).

(ii) We say f is continuous if f is continuous at every x ∈ R.

(iii) We say f is uniformly continuous if for every ϵ > 0, there exists some
δ > 0 such that |f(x)− f(y)| < ϵ whenever |x− y| < δ.

Proposition 0.9. Let f : [a, b] → R for some real numbers a < b. If f is
continuous on [a, b], then f is also bounded on [a, b].

Definition 0.10. Consider a sequence of real-valued functions (fn)n≥1.

(i) We say fn converges pointwise to some function f if limn→∞ fn(x) =
f(x) for each x.

(ii) We say fn converges uniformly to some function f if limn→∞ supx |fn(x)−
f(x)| = 0; that is, for every ϵ > 0, there exists some Nϵ ∈ N such that
for each n ≥ Nϵ and each x, we have |fn(x)− f(x)| < ϵ.

Remark 0.6. In both “uniformly continuous” and “uniformly convergent”,
the word “uniformly” essentially means that we can find a bound for the
convergence rate that is independent of x. Of course, uniform convergence
implies pointwise convergence, which can be proved by checking the defini-
tions.
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