
Unit 6: Convergence in Lp

Instructor: Quan Zhou

6.1 Doob’s Lp inequality

Lemma 6.1. Let (Xn)n≥0 be a submartingale, and define X̄n = max0≤i≤nX
+
i .

For any c > 0,

cP(X̄n ≥ c) ≤ E[Xn1{X̄n≥c}].

Proof. We fix n and let T = n∧ inf{k : Xk ≥ c}, which is a bounded stopping
time. By Theorem 4.3, EXT ≤ EXn. Let A = {X̄n ≥ c}, and observe that
on the event Ac, we have T = n. Hence, XT −Xn = (XT −Xn)1A, and thus

E[Xn1A] ≥ E[XT1A] ≥ cE[1A],

which proves the asserted inequality.

Theorem 6.1. Let (Xn)n≥0 be a submartingale and p ∈ (1,∞). Then,

E[X̄p
n] ≤

(
p

p− 1

)p

E[(X+
n )p],

where X̄n = max0≤i≤nX
+
i .

Proof. We use truncation. Pick M <∞ and define Yn = X̄n∧M . Lemma 6.1
yields P(Yn ≥ y) ≤ y−1E[X+

n 1{Yn≥y}], since {Yn ≥ y} = {X̄n ≥ y} if M ≥ y
and {Yn ≥ y} = ∅ if M < y. Hence,

E[Y p
n ] =

∫ ∞
0

pyp−1P(Yn ≥ y)dy

≤
∫ ∞

0

pyp−2E[X+
n 1{Yn≥y}]dy

= E

[
X+

n

∫ ∞
0

pyp−2
1{Yn≥y}dy

]
=

p

p− 1
E
[
X+

n Y
p−1
n

]
.

Hölder’s inequality yields that

E
[
X+

n Y
p−1
n dy

]
≤
(
E[(X+

n )p]
)1/p (

E[(Y p−1
n )p/(p−1)]

)(p−1)/p
.
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Combining the two inequalities above and using E[Y p
n ] < ∞ due to trunca-

tion, we obtain that

(E[Y p
n ])1/p ≤ p

p− 1

(
E[(X+

n )p]
)1/p

.

To conclude the proof, let M → ∞ and apply monotone convergence theo-
rem.

Corollary 6.1. Let (Xn)n≥0 be a martingale and p ∈ (1,∞). Then,

E

[
( max
0≤i≤n

|Xi|)p
]
≤
(

p

p− 1

)p

E [|Xn|p] .

Proof. Apply Theorem 6.1 and Lemma 6.2 below.

Remark 6.1. In Theorem 6.1 and Corollary 6.1, there is no assumption on
the integrability of |Xn|p. Indeed, Corollary 6.1 implies that, for a martingale
(Xn) and p ∈ (1,∞), supn E|Xn|p < ∞ if and only if E[supn |Xn|p] < ∞.
However, this no longer holds if p = 1.

Lemma 6.2. Let (Xn) be a martingale and ϕ be a convex function such that
E|ϕ(Xn)| < ∞ for each n. Then, (Yn) is a submatingale (w.r.t. the same
filtration) where Yn = ϕ(Xn).

Proof. Apply Jensen’s inequality for conditional expectations.

Remark 6.2. If (Xn) is only a submartingale, we need to require ϕ to be a
non-decreasing convex function. Then, (ϕ(Xn)) is still a submartingale.

Exercise 6.1. Let Z1, Z2, . . . be independent such that EZn = 0 for every
n. Define Sn = Z1 + · · · + Zn, and Vn = Var(Sn) =

∑n
i=1 EZ

2
i . Prove

Kolmogorov’s inequality:

P( max
1≤i≤n

|Si| ≥ c) ≤ Vn/c
2.

Hint: use the submartingale (S2
n).

Exercise 6.2. Consider the setting of Exercise 6.1. Assume that |Zn| ≤ K
for every n. Prove that

P( max
1≤i≤n

|Si| ≤ c) ≤ (c+K)2

Vn + (c+K)2 − c2
≤ (c+K)2

Vn
.

Hint: use Theorem 4.3 with the martingale (S2
n − Vn) and stopping time

T = n ∧ inf{k : |Sk| > c}.
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6.2 Convergence in Lp

Theorem 6.2. Let Xn be a martingale with supn E|Xn|p < ∞ for some
p > 1. Then Xn converges almost surely and in Lp.

Proof. The assumption implies that supE|Xn| < ∞, and thus Theorem 5.1
shows that Xn

a.s.→ X∞. Define X∗ = supn≥0 |Xn|, and observe that |Xn −
X∞|p ≤ (2X∗)p by the triangle inequality. But by Corollary 6.1, (X∗)p is
integrable. Hence, we can apply dominated convergence theorem to conclude
that E[|Xn −X∞|p]→ 0.

Example 6.1. Consider the branching process (Xn) defined in Example 5.1,
and we still let Wn = Xn/µ

n and W∞ = limWn. Exercise 5.1 shows that, if
µ ≤ 1, then Xn = 0 (and thus Wn = 0) for all sufficiently large n. Hence,
W∞ = 0 a.s.

Now consider the case µ > 1, and assume Var(Z0,1) = σ2 ∈ (0,∞). By
Lemma 6.3 below, we have

Var(Xn) = µ2Var(Xn−1) + σ2E[Xn−1].

Hence, using Xn = Wnµ
n, we get

Var(Wn) = Var(Wn−1) +
σ2

µn+1
E[Wn−1] = Var(Wn−1) +

σ2

µn+1
.

An induction argument shows that

Var(Wn) =
n∑

i=1

σ2

µi+1
=
σ2(1− µ−n)

µ(µ− 1)
≤ σ2

µ(µ− 1)
.

which is finite for every n. Hence, (Wn) is a martingale bounded in L2. Thus,
Wn converges to W∞ a.s. and in L2, and E[W∞] = 1.

Lemma 6.3. Let X1, X2, . . . , be i.i.d. and N be a non-negative integer-valued
random variable independent of (Xn)n≥1. Define SN =

∑N
i=1Xi. Suppose

EX2
1 <∞ and EN2 <∞. Then, ES2

N <∞ and

Var(SN) = Var(N)(EX1)2 + E(N)Var(X1).

Proof. Try it yourself.
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