Unit 4: Stopping Times and Stopped Processes

Instructor: Quan Zhou

4.1 Stopping times

Definition 4.1. Let T: Q@ — {0,1,2,...} U {oco} be measurable. We say T’
is a stopping time w.r.t. (F,),>0 if {T" < n} € F, for each n < oc.

Lemma 4.1. LetT: Q — {0,1,2,... }U{oo} be measurable. T is a stopping
time w.r.t. (Fy,) if and only if {T =n} € F, for each n < cc.

Proof. To prove the “only if” part, observe that {T'=n} = {T <n}N{T <
n — 1}¢, which is in F,,. For the “if” part, fix an arbitrary n, and we have

{Tgn}:O{T:k}efn,

since {T' = k} € F, C F, for any k < n. O
Theorem 4.1. Given a stopping time T, define

Fr={AecF: An{T <n} € F,, for any n}.
Then Fr is a o-algebra. It is called the stopped o-algebra (or the o-algebra
of T-past).
Proof. Try it yourself. O]

Remark 4.1. Just like F, contains all the information up to time n, Fr
contains all the information up to time 7" (which is random). But the defini-
tion of F7 may look much more confusing. The following example may help
explain why Fr is defined in this way.

Example 4.1. Let F,, = 0(Xy, X1, ..., X,) and T be a stopping time. Con-
sider the event

A:{maxXk21}.

0<k<T

Then A € Fr, since, for any n,

Aﬂ{T:n}:{maxXk21}ﬂ{T=n}€]:n.

0<k<n
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Exercise 4.1. Let (X,,),>0 be given and define F,, = 0(Xy, X1,...,X,) for
each n. Let 0,7 be stopping times w.r.t. (F,). Which of the following
random variables are always stopping times w.r.t. (F,)?

(i) T = 101.

(i) T =inf{n > 0: X,, € [1,2]}]]

(iii) T = sup{n < 100: X,, > 7}.

(iv) T=1inf{n > 0: X,, > X,.5}.

(Vi) T=0+T.

i) T
) T
) T
(v) T=0ANT.
) T
) T

(vil) T'=71 — 5 (assuming 7 > 5, a.s.)

Exercise 4.2. Show that a stopping time T is Fpr-measurable.

4.2 Stopped processes

Definition 4.2. Given an adapted process (X,,),>0 and a stopping time T,
let (X,ar)n>0 is called the stopped process. More explicitly, letting Y,, =
Xoar, we have Y, (w) = Xpare) (w).

Remark 4.2. Here is another way to view Fr. Let F,, = o(Xo, X1,...,X,)
for each n and 7" be a stopping time. Then, Fr = o((Xna1)n>0), i-€., the
o-algebra generated by the stopped process (proof is omitted).

Theorem 4.2. If (X,,)n>0 is a supermartingale and T is a stopping time,
then (X,ar) is also a supermartingale.

Proof. Define H,, = 1{p>py forn > 1. Since {T' > n} = {T' < n—-1}° € F,_,
(H,) is previsible. Further,

nAT

(H-X), ZHk (Xp = Xpo1) = > Xk — Xp1 = Xpr — Xo.
k=1

By Theorem 3.1, H - X is a supermartingale, which implies E[X,,\7 | Fr—1]
X(n—1ar for each n > 1.

RVA

1By convention, we set inf(f)) = oo and sup(()) = 0.
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Theorem 4.3. Let (X,,) be a submartingale and T be a stopping time such
that P(T' < m) =1 for some m < oco. Then,

E[Xo] < E[X1] < E[X,n].

Proof. By Theorem , (Y,,) is a submartingale where Y,, = X,,r. Hence,
E[Yo] < E[Y,]. But Yy = Xy and Y,,, = X7, a.s. Hence, E[X,] < E[X7].
Next, define H, = lir<,), which is previsible, and thus H - X is a
submartingale. It follows that 0 = E[(H - X)o] < E[(H - X),,]. Since
(H - X)m = X,;n — X7, we obtain the other direction of the asserted in-
equality. O

Corollary 4.1. Let (X,,) be a martingale and T' be a stopping time such that
P(T <m) =1 for some m < co. Then, E[X,] = E[X7].

Proof. Use Theorem and the fact that (X,,) is both a supermartingale
and submartingale. O

Remark 4.3. Theorem 4.3| can be seen as a special case of the famous
optional sampling theorem. We will prove in later lectures analogous results
where the boundedness of 7' is replaced by weaker conditions.
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