
Unit 4: Stopping Times and Stopped Processes

Instructor: Quan Zhou

4.1 Stopping times

Definition 4.1. Let T : Ω→ {0, 1, 2, . . . } ∪ {∞} be measurable. We say T
is a stopping time w.r.t. (Fn)n≥0 if {T ≤ n} ∈ Fn for each n <∞.

Lemma 4.1. Let T : Ω→ {0, 1, 2, . . . }∪{∞} be measurable. T is a stopping
time w.r.t. (Fn) if and only if {T = n} ∈ Fn for each n <∞.

Proof. To prove the “only if” part, observe that {T = n} = {T ≤ n}∩{T ≤
n− 1}c, which is in Fn. For the “if” part, fix an arbitrary n, and we have

{T ≤ n} =
n⋃

k=0

{T = k} ∈ Fn,

since {T = k} ∈ Fk ⊂ Fn for any k ≤ n.

Theorem 4.1. Given a stopping time T , define

FT = {A ∈ F : A ∩ {T ≤ n} ∈ Fn, for any n}.

Then FT is a σ-algebra. It is called the stopped σ-algebra (or the σ-algebra
of T -past).

Proof. Try it yourself.

Remark 4.1. Just like Fn contains all the information up to time n, FT

contains all the information up to time T (which is random). But the defini-
tion of FT may look much more confusing. The following example may help
explain why FT is defined in this way.

Example 4.1. Let Fn = σ(X0, X1, . . . , Xn) and T be a stopping time. Con-
sider the event

A =

{
max
0≤k≤T

Xk ≥ 1

}
.

Then A ∈ FT , since, for any n,

A ∩ {T = n} =

{
max
0≤k≤n

Xk ≥ 1

}
∩ {T = n} ∈ Fn.
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Exercise 4.1. Let (Xn)n≥0 be given and define Fn = σ(X0, X1, . . . , Xn) for
each n. Let σ, τ be stopping times w.r.t. (Fn). Which of the following
random variables are always stopping times w.r.t. (Fn)?

(i) T = 101.

(ii) T = inf{n ≥ 0: Xn ∈ [1, 2]}.1

(iii) T = sup{n ≤ 100: Xn ≥ 7}.

(iv) T = inf{n ≥ 0: Xn ≥ Xn+5}.

(v) T = σ ∧ τ .

(vi) T = σ + τ .

(vii) T = τ − 5 (assuming τ ≥ 5, a.s.)

Exercise 4.2. Show that a stopping time T is FT -measurable.

4.2 Stopped processes

Definition 4.2. Given an adapted process (Xn)n≥0 and a stopping time T ,
let (Xn∧T )n≥0 is called the stopped process. More explicitly, letting Yn =
Xn∧T , we have Yn(ω) = Xn∧T (ω)(ω).

Remark 4.2. Here is another way to view FT . Let Fn = σ(X0, X1, . . . , Xn)
for each n and T be a stopping time. Then, FT = σ((Xn∧T )n≥0), i.e., the
σ-algebra generated by the stopped process (proof is omitted).

Theorem 4.2. If (Xn)n≥0 is a supermartingale and T is a stopping time,
then (Xn∧T ) is also a supermartingale.

Proof. Define Hn = 1{T≥n} for n ≥ 1. Since {T ≥ n} = {T ≤ n−1}c ∈ Fn−1,
(Hn) is previsible. Further,

(H ·X)n =
n∑

k=1

Hk(Xk −Xk−1) =
n∧T∑
k=1

Xk −Xk−1 = Xn∧T −X0.

By Theorem 3.1, H ·X is a supermartingale, which implies E[Xn∧T | Fn−1] ≤
X(n−1)∧T for each n ≥ 1.

1By convention, we set inf(∅) =∞ and sup(∅) = 0.
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Theorem 4.3. Let (Xn) be a submartingale and T be a stopping time such
that P(T ≤ m) = 1 for some m <∞. Then,

E[X0] ≤ E[XT ] ≤ E[Xm].

Proof. By Theorem 4.2, (Yn) is a submartingale where Yn = Xn∧T . Hence,
E[Y0] ≤ E[Ym]. But Y0 = X0 and Ym = XT , a.s. Hence, E[X0] ≤ E[XT ].

Next, define Hn = 1{T<n}, which is previsible, and thus H · X is a
submartingale. It follows that 0 = E[(H · X)0] ≤ E[(H · X)m]. Since
(H · X)m = Xm − XT , we obtain the other direction of the asserted in-
equality.

Corollary 4.1. Let (Xn) be a martingale and T be a stopping time such that
P(T ≤ m) = 1 for some m <∞. Then, E[X0] = E[XT ].

Proof. Use Theorem 4.3 and the fact that (Xn) is both a supermartingale
and submartingale.

Remark 4.3. Theorem 4.3 can be seen as a special case of the famous
optional sampling theorem. We will prove in later lectures analogous results
where the boundedness of T is replaced by weaker conditions.
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