Unit 15: Itô Integral

Instructor: Quan Zhou

Fall 2023

A motivating example

Let B be a standard Brownian motion. What is $\int_0^1 B_t dB_t$?

Let's discretize the time by choosing $0 = t_0 < t_1 < \cdots < t_n = 1$. Consider

$$S_n = \sum_{k=1}^n B(t_{k-1})(B(t_k) - B(t_{k-1}))$$

$$= \sum_{k=1}^n B(t_k)(B(t_k) - B(t_{k-1})) - \sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2$$

$$= B_1^2 - S_n - \sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2.$$

A motivating example

So we obtain that

$$2S_n = B_1^2 - V_n$$
, where $V_n = \sum_{k=1}^n (B(t_k) - B(t_{k-1}))^2$.

Recall that $B(t_k) - B(t_{k-1}) \sim N(0, t_k - t_{k-1})$ and the increments are independent. So $E[V_n] = 1$ for every n. Under mild conditions on $(t_k)_{1 \leq k \leq n}$, V_n or a subsequence of V_n converges a.s. to 1.

Hence, we find that $\int_0^1 B_t dB_t = (B_1^2 - 1)/2$.

A motivating example

We approximated $\int_0^1 B_t dB_t$ using

$$S_n = \sum_{k=1}^n B(t_{k-1})(B(t_k) - B(t_{k-1}))$$

The result would be different if we used

$$S_n = \sum_{k=1}^n B(t_k)(B(t_k) - B(t_{k-1})),$$
 or $S_n = \sum_{k=1}^n \frac{B(t_{k-1}) + B(t_k)}{2}(B(t_k) - B(t_{k-1})).$

Itô integral

Let B be a standard Brownian motion on (Ω, \mathcal{F}, P) . We will construct integrals of the form

$$I_t(X) := \int_0^t X_s \, \mathrm{d}B_s,$$

for a class of X s.t. $(I_t(X))_{t>0}$ is a continuous martingale.

We will assume that \mathcal{F}_t is the completion of $\sigma((B_s)_{0 \le s \le t})$ (see [2, Chap. 2.7]). It still holds that $B_t - B_s$ is independent of \mathcal{F}_s for t > s. Completeness is needed to show that, e.g., $(I_t(X))_{t \ge 0}$ is also adapted.

Two L^2 spaces

Definition 15.1

We say X is measurable, if $(\omega, t) \mapsto X_t(\omega)$ is a measurable mapping from $(\Omega \times [0, \infty), \mathcal{F} \times \mathcal{B}([0, \infty))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Now consider the space

$$\mathcal{L}^2(B) = \left\{X \colon X \text{ is measurable, adapted to } (\mathcal{F}_t)_{0 \leq t < \infty} \text{ and } \|X\|_2 < \infty\right\},$$

where $||X||_2 = ||X||_{2,\infty}$ and

$$||X||_{2,t}^2 = \mathsf{E}\left[\int_0^t X_s^2 \,\mathrm{d}s\right], \quad \text{ for } 0 \le t \le \infty.$$

 $\|X\|_{2,t}$ is just the L^2 -norm of X, if we treat X as a function defined on $(\Omega \times [0,t], \mathcal{F} \times \mathcal{B}([0,t]), \mathsf{P} \times \mathsf{Leb})$. If $t=\infty$, we replace [0,t] with $[0,\infty)$.

6 / 32

Two L^2 spaces

For any fixed t (including $t=\infty$), $I_t(X)$ is a mapping from Ω to \mathbb{R} . We will show that for $X \in \mathcal{L}^2(B)$, $I_t(X)$ has $\|I_t(X)\|_2 < \infty$, where

$$||I_t(X)||_2^2 = E[(I_t(X))^2].$$

In other words, $I_t(X)$ is an element in the L^2 -space

$$\mathcal{L}^2(\Omega) = \left\{\, Y \colon (\Omega, \mathcal{F}, \mathsf{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})), \text{ and } \mathsf{E} \, Y^2 < \infty \right\}.$$

Assume that X can be expressed by

$$X_t(\omega) = \sum_{i=1}^n f_{i-1}(\omega) \mathbb{1}_{(t_{i-1},t_i]}(t),$$

where $0 = t_0 < t_1 < \cdots < t_n$ and, for $i = 0, 1, \ldots, n-1$, $f_i \colon \Omega \to \mathbb{R}$ is bounded and \mathcal{F}_{t_i} -measurable. We say X is a simple or elementary function (or process), and use \mathcal{E} to denote the space of all such functions.

Definition 15.2

For $X \in \mathcal{E}$, define

$$(I_t(X)) = \sum_{i=1}^n f_{i-1}(B_{t_i \wedge t} - B_{t_{i-1} \wedge t}).$$

Theorem 15.3

For $X \in \mathcal{E}$, $(I_t(X))_{0 \le t \le \infty}$ is a martingale with continuous paths, and

$$\mathsf{E}[I_{\infty}(X)^2] = \mathsf{E}\left[\int_0^{\infty} X_s^2 \,\mathrm{d}s\right].$$

That is, $||I_{\infty}(X)||_2 = ||X||_2$. Further, $I_{\infty} \colon \mathcal{E} \to \mathcal{L}^2(\Omega)$ is linear.

Proof.

Try it yourself.

We now define $I_t(X)$ for $X \in \mathcal{L}^2(B)$ by approximating X using a sequence of functions $(X^n)_{n\geq 1}$ that converge in L^2 , i.e.,

$$\lim_{n\to\infty}||X^n-X||_2=0.$$

We will build this approximation sequence "backwards". For each $X \in \mathcal{L}^2(B)$, we approximate it in L^2 using a sequence of functions X^n , say, in some class \mathcal{A}_1 ; Then, for each $X \in \mathcal{A}_1$, we approximate it in L^2 using a sequence of functions in some class \mathcal{A}_2 . Triangle inequality implies that we can also approximate $X \in \mathcal{L}^2(B)$ in L^2 using functions in \mathcal{A}_2 . Eventually, we will approximate X using simple functions.

Henceforth, we will use the notations $X(\omega, t)$ and $X_t(\omega)$ interchangeably.

Step 1: for each $X \in \mathcal{L}^2(B)$, define X^n by

$$X^{n}(\omega,s)=X(\omega,s)\mathbb{1}_{[0,n]}(s).$$

Then $X^n \in \mathcal{L}^2(B)$, X^n converges to X pointwise, and $\|X^n\|_2 \leq \|X\|_2$. So DCT implies that $\lim_{n \to \infty} \|X^n - X\|_2 = 0$.

Define $A_1 = \{X \in \mathcal{L}^2(B) : \exists t < \infty \text{ s.t. } X_s = 0 \text{ for all } s \geq t\}.$

Step 2: for each $X \in \mathcal{A}_1$, define X^n by

$$X^n(\omega,s)=X(\omega,s)\wedge n.$$

Again, DCT yields that $||X^n - X||_2 \to 0$.

Define $A_2 = \{X \in A_1 \colon X \text{ is bounded}\}.$

Step 3: for each $X \in A_2$, we approximate it using functions in

$$A_3 = \{X \in A_2 : s \mapsto X_s(\omega) \text{ is continuous for every } \omega\}.$$

We use "moving average" to smooth the function:

$$X^n(\omega,s) = n \int_{(s-n^{-1})\vee 0}^s X(\omega,u) du.$$

By the fundamental theorem of calculus, for each ω , $X^n(\omega,s)$ converges to $X(\omega,s)$ for almost every s. Since X,X^n are bounded, $\|X^n-X\|_2\to 0$.

A technical challenge is to analyze the measurability of X^n . Completeness of \mathcal{F}_t is needed (see [2]).

Step 4: for each $X \in \mathcal{A}_3$, we approximate it using functions in \mathcal{E} . Define $X_0^n = X_0$, and for $0 < s \le t$, define

$$X^{n}(\omega, s) = \sum_{k=0}^{2^{n}-1} X\left(\omega, \frac{kt}{2^{n}}\right) \mathbb{1}_{(kt/2^{n}, (k+1)t/2^{n}]}(s).$$

For each ω , since $X(\omega)$ is continuous, we have $\lim_{n\to\infty}X^n(\omega,s)=X(\omega,s)$ for each s. Since X^n,X are bounded, $\lim_{n\to\infty}\|X^n-X\|_2=0$.

Conclusion: for each $X \in \mathcal{L}^2(B)$, there exists $(X^n)_{n \geq 1}$ in \mathcal{E} such that $\lim_{n \to \infty} ||X^n - X||_2 = 0$.

Definition 15.4

For $X \in \mathcal{L}^2(B)$, choose $(X^n)_{n \geq 1}$ in \mathcal{E} such that $\lim_{n \to \infty} ||X^n - X||_2 = 0$. Define

$$I_{\infty}(X) = L^2 - \lim I_{\infty}(X^n),$$

where L^2 - lim means that $\mathsf{E}[(I_\infty(X^n)-I_\infty(X))^2] o 0$. Define

$$I_t(X) = I_{\infty}(X^{(t)}), \text{ where } X_s^{(t)} = X_s \mathbb{1}_{\{s \le t\}}.$$

Since $(X^n)_{n\geq 1}$ converges in L^2 , $(X^n)_{n\geq 1}$ is Cauchy in $\mathcal{L}^2(B)$. By Theorem 15.3, $(I_\infty(X^n))_{n\geq 1}$ is also Cauchy in $\mathcal{L}^2(\Omega)$. The space $\mathcal{L}^2(\Omega)$ is complete, which implies that $I_\infty(X)$ exists. Theorem 15.3 also implies that $I_\infty(X)$ is unique.

Theorem 15.5

For $X \in \mathcal{L}^2(B)$, $(I_t(X))_{0 \le t < \infty}$ is a martingale which has an a.s. continuous modification adapted to $(\mathcal{F}_t)_{t \ge 0}$, and $\|I_\infty(X)\|_2 = \|X\|_2$. Further, $I_\infty \colon \mathcal{L}^2(B) \to \mathcal{L}^2(\Omega)$ is linear.

The property $\|I_{\infty}(X)\|_2 = \|X\|_2$ is known as "Itô isometry", since it shows that I_{∞} is a distance-preserving map from $\mathcal{L}^2(B)$ to $\mathcal{L}^2(\Omega)$.

Proof.

We only prove the martingale property. Let (X^n) be the approximating sequence of simple functions, which must satisfy, a.s.,

$$E[I_{\infty}(X^n) | \mathcal{F}_t] = I_t(X^n).$$

But $I_t(X^n) \stackrel{L^2}{\to} I_t(X)$, and $E[I_{\infty}(X^n) \mid \mathcal{F}_t] \stackrel{L^2}{\to} E[I_{\infty}(X) \mid \mathcal{F}_t]$ by Jensen's inequality. The two limits must coincide; that is, a.s.,

$$\mathsf{E}[I_{\infty}(X)\,|\,\mathcal{F}_t]=I_t(X).$$

The fact that I_{∞} is a linear isometry is easy to prove. For the existence of a continuous modification, see [2].

Recall that for $X \in \mathcal{L}^2(B)$ and fixed t, we defined $I_t(X)$ to be $I_{\infty}(X^{(t)})$, where $X_s^{(t)} = X_s \mathbb{1}_{\{s \leq t\}}$.

Suppose $X \notin \mathcal{L}^2(B)$, but $\|X\|_{2,t} = \mathsf{E} \int_0^t X_s^2 \,\mathrm{d} s < \infty$. Intuitively, we should still be able to define the Itô integral $I_t(X)$, since $X^{(t)} \in \mathcal{L}^2(B)$.

To further generalize this idea using stopping times, we first prove some results which show that Itô integrals are indeed determined locally by the local values of the integrand.

Given a stopping time T and a process X, define the truncated process $X^{(T)}$ by $X_s^{(T)} = X_s \mathbb{1}_{\{s \le T\}}$.

Theorem 15.6

Let $X \in \mathcal{L}^2(B)$ and T be a stopping time. Then, $I_T(X) = I_{\infty}(X^{(T)})$ a.s.

Here $(I_T(X))(\omega)$ is interpreted as the value of the function $t \mapsto (I_t(X))(\omega)$ evaluated at $t = T(\omega)$. So the equivalence between $I_T(X)$ and $I_{\infty}(X^{(T)})$ is not obvious.

Sketch of proof.

Let \mathcal{T}_n be the collection of all stopping times that take values in $\{k/2^n \colon k=0,1,\ldots\} \cup \{\infty\}.$

Step 1: Assume that $T \in \mathcal{T}_n$ for some n and $X \in \mathcal{E}$. Directly use the definition of Itô integral to show that the equality holds.

Step 2: Assume that $T \in \mathcal{T}_n$ for some n and $X \in \mathcal{L}^2(B)$. Choose $X^n \in \mathcal{E}$ s.t. $\|X^n - X\|_2 \to 0$. Show that $I_\infty(X^{n,(T)}) \overset{L^2}{\to} I_\infty(X^{(T)})$. Let t be a possible value of T, and we have $I_t(X^n) \overset{L^2}{\to} I_t(X)$. On the event $\{T = t\}$, $I_\infty(X^{n,(T)}) = I_t(X^n)$ by step 1, and argue that the limits must equal a.s. Since there are countably many such t's, $I_\infty(X^{(T)}) = I_T(X)$, a.s.

Step 3: Approximate any stopping time T using $T_n = 2^{-n} \lceil 2^n T \rceil$. Since $T_n \in \mathcal{T}_n$, $I_{\infty}(X^{(T_n)}) = I_{T_n}(X)$ a.s. by step 2. Argue that $X^{(T_n)} \stackrel{L^2}{\to} X^{(T)}$, and use the path continuity of $I_t(X)$ to conclude the proof.

Corollary 15.7

Let T be a stopping time and $X, Y \in \mathcal{L}^2(B)$.

- (i) On the event $\{T \ge t\}$, $I_t(X) = I_t(X^{(T)})$, a.s.
- (ii) If $X_t = Y_t$ for all $t \leq T$, $I_T(X) = I_T(Y)$, a.s.

This result enables us to uniquely define the Itô integral for a larger class of integrands using stopping times.

Suppose X is measurable, adapted and

$$\mathsf{P}\left(\int_0^t X_s^2 \,\mathrm{d} s < \infty\right) = 1, \quad \forall \ t \geq 0.$$

To define the Itô integral of X, we can choose a sequence of stopping times $(T_n)_{n\geq 1}$ such that $T_n\uparrow\infty$ a.s. and $X^{(T_n)}\in\mathcal{L}^2(B)$. For example,

$$T_n = n \wedge \inf \left\{ t \colon \int_0^t X_s^2 ds \ge n \right\}.$$

Then, we define $I_t(X) = I_t(X^{(T_n)})$ for $0 \le t \le T_n$.

Theorem 15.8

Suppose X is measurable, adapted and $\|X\|_{2,t}^2 = \mathbb{E}[\int_0^t X_s^2 \, \mathrm{d}s] < \infty$ for every t. Then $(I_t(X))_{t>0}$ is a square integrable continuous martingale.

Proof.

For any $0 \le s < t$, since $\|X\|_{2,t}^2 < \infty$, we can define $I_s(X) = I_s(X^{(t)})$ and $I_t(X) = I_t(X^{(t)})$. Since $X^{(t)} \in \mathcal{L}^2(B)$, $\mathrm{E}[I_t(X) \mid \mathcal{F}_s] = I_s(X)$ by Theorem 15.5. So $(I_t(X))_{t \ge 0}$ is a martingale.

Itô's lemma

For any t > 0, we can show that (see Exercise 15.1)

$$\sum_{k=1}^{2^n} \left(B_{kt/2^n} - B_{(k-1)t/2^n}\right)^2 \overset{\text{a.s.}}{\to} t, \quad \text{ as } n \to \infty.$$

This is the key difference between Brownian paths and a differentiable function. If we write $dB_t = \sqrt{dt}$, for smooth f, we have

$$df(B_t) = f'(B_t)dB_t + \frac{1}{2}f''(B_t)(dB_t)^2$$
$$= f'(B_t)dB_t + \frac{1}{2}f''(B_t)dt.$$

This is known as Itô's lemma.

Itô's lemma

Theorem 15.9

Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable. Almost surely,

$$f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds, \quad \forall t \geq 0.$$

Since f' and $t \mapsto B_t$ are both continuous, for each ω and t, $f'(B_s(\omega))$ is bounded on $s \in [0, t]$, and thus $\int_0^t f'(B_s) dB_s$ is defined.

The main idea of the proof is to approximate $f(B_{s+h}) - f(B_s)$ using second-order Taylor expansion.

Examples

To recover the result for the motivating example considered at the beginning of this unit, let $f(x) = x^2/2$. Then,

$$\frac{1}{2}B_t^2 = \int_0^t B_s \,\mathrm{d}B_s + \frac{t}{2}.$$

Let $f(x) = x^4$. Then,

$$\mathrm{d}B_t^4 = 4B_t^3 \mathrm{d}B_t + 6B_t^2 \mathrm{d}t.$$

The martingale property of Itô integral yields $6E[\int_0^t B_s^2 ds] = E[B_t^4]$.

Itô's lemma

Theorem 15.10

Let $f(x,s): \mathbb{R} \times [0,\infty) \to \mathbb{R}$ be in $C^{2,1}$. Almost surely,

$$f(B_t, t) = f(B_0, 0) + \int_0^t \frac{\partial}{\partial s} f(B_s, s) \, \mathrm{d}s + \int_0^t \frac{\partial}{\partial x} f(B_s, s) \, \mathrm{d}B_s + \frac{1}{2} \int_0^t \frac{\partial^2}{\partial x^2} f(B_s, s) \, \mathrm{d}s, \quad \forall t \ge 0.$$

Examples

Let
$$f(x,s) = e^{x-s/2}$$
 and $S_t = f(B_t,t)$. Then,

$$\frac{\partial}{\partial s}f(x,s) = -\frac{1}{2}f(x,s), \quad \frac{\partial}{\partial x}f(x,s) = f(x,s), \quad \frac{\partial^2}{\partial x^2}f(x,s) = f(x,s).$$

Hence,

$$\mathrm{d}S_t = S_t \mathrm{d}B_t.$$

 S_t is called a geometric Brownian motion.

Itô's martingale representation theorem

Theorem 15.11

Suppose $(M_t)_{0 \le t \le \infty}$ is a square integrable martingale w.r.t. $(\mathcal{F}_t)_{t \ge 0}$. Then there exists a measurable and adapted process X such that for every $t, M_t = E[M_0] + \int_0^t X_s dB_s \ a.s.$

For more general martingale representation results, see [2].

Exercises

Exercise 15.1

Let $t_{n,k} = k/2^n$ for $k = 0, 1, \dots, 2^n$. Define

$$\tilde{V}_n = \sum_{k=1}^{2^n} (B(t_{n,k}) - B(t_{n,k-1}))^2.$$

Use Borel-Cantelli lemma to show that $\tilde{V}_n \stackrel{\text{a.s.}}{\to} 1$.

Exercise 15.2

Prove Theorem 15.3.

Exercises

Exercise 15.3

Show that $I_{\infty}(X)$ given in Definition 15.4 is unique.

Exercise 15.4

Use the definition of Itô integral to prove that $\int_0^t s \, dB_s = tB_t - \int_0^t B_s \, ds$.

Exercise 15.5

Show that $B_t^3 - 3tB_t$ is a martingale.

References

- Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
- Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 2012.
- [3] Achim Klenke. Probability theory: a comprehensive course. Springer Science & Business Media. 2013.
- Peter Mörters and Yuval Peres. Brownian motion, volume 30. Cambridge University Press, 2010.
- Bernt Øksendal. Stochastic differential equations: an introduction with applications. Springer Science & Business Media, 2013.