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Continuous-time stochastic processes

Let (2, F, P) be a probability space. We say (Xt)o<t<oo, @ collection of
random variables defined on (2, 7, P) indexed by t € [0, c0), is a
continuous-time stochastic process.

Sample path

For each w € Q, the function t — X;(w) is said to be a sample path or
trajectory of the process X = (X;)o<t<oo-

Finite-dimensional distributions

The finite-dimensional distributions of X refer to the distributions of
(Xty, Xtpy -y Xe,) foranyn>1land 0 <ty <tp < -+ < tp < 0.
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Equivalence between stochastic processes

Theorem 14.1

Let X and Y be two stochastic processes. Consider the following.
Q P(X: = Y; for every 0 < t < 00) = 1 (indistinguishable).
@ P(X: =Y;:) =1 forevery 0 <t < oo (modification).
© X and Y have the same finite-dimensional distributions.
Then (1) = (2) = (3)

Try it yourself
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Continuous-time martingales

Let (Ft)o<t<oco be a filtration (i.e., non-decreasing o-algebras) such that
X is adapted to (F¢)o<t<oo (i-€., X¢ € F¢ for each t). Further, assume

that E|X:| < oo for each t.

Submartingales, supermartingales and martingales
e X is a submartingale if E[X; | Fs] > X;, a.s. forany 0 < s < t < oo.
@ X is a supermartingale if —X is a submartingale.
@ X is a martingale if it is both a supermartingale and a submartingale.

Many results for discrete-time martingales (e.g. upcrossing inequality,
Doob'’s inequality, optional sampling theorem) continue to hold for
continuous-time martingales with right-continuous paths.
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Brownian motion

Brownian motion is the foundation of continuous-time martingales.

Definition 14.2

We say B = (Bt)o<t<oo is a standard one-dimensional Brownian motion
(i.e., Wiener process) if
Q@ By =0;
@ forany to < t; <--- < tp, B(ty), B(t1) — B(to), ..., B(tn) — B(tn—1)
are independent;
@ forany s,t >0, B(s + t) — B(s) ~ N(0, t);

@ sample paths of B are almost surely continuous.

“We will sometimes write B(t) instead of B:.
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Numerical simulation of Brownian motion
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Here is the R code.

h = 0.001

N =1/h

Z = rnorm(N, mean=0, sd=sqrt(h))
B = ¢(0, cumsum(Z))

plot((0:N)/N, B, type=‘l’, xlab=‘time’, ylab=‘B_t’)
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Numerical simulation of Brownian motion

time
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Construction of Brownian motion: Method 1

We first consider how to construct a Brownian motion on the time interval
[0,1]. The method we use will also justify the simulation scheme used in
the previous slides and lead to the famous Donsker's theorem.
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Construction of Brownian motion: Method 1

Let Z1,2Z5,... bei.i.d. random variables with mean zero and variance
02 € (0,00). Define S, = Zy + -+ + Z, and set Sp = 0. Define (X/)o<t<1
as the scaled linear interpolation of (S;)1<j<n:

1 1
X{ = Uiﬁstnq + (nt — LntJ)mZLntJ+l
1
= rﬁshﬂ + En7t.

Note that Ej ; £ 0as n— 0. Since [nt]/n —t, S|pe/oy/n (and thus
X[") converges in distribution to \/tN(0,1) by CLT.
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Construction of Brownian motion: Method 1

Similarly, an application of the multivariate CLT yields that, for any
0<ty<ti<--<tym<1 (X"(to),X"(t1),...,X"(tm)) converges in
distribution to the finite-dimensional distribution specified in

Definition 14.2 (i.e., a multivariate normal distribution with independent
increments).

To show that this implies the existence of Brownian motion, we need
@ Prohorov’s theorem,

e Kolmogorov-Chentsov continuity theorem (see Method 2),
o Arzela-Ascoli theorem (see [4]).
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Prohorov's theorem

Let (S, d) be a metric space and B(S) denote the Borel o-algebra (i.e.,
the o-algebra generated by all open sets w.r.t. the metric d).

Relatively compactness and tightness

Let I be a collection of probability measures on (S, B(S)). We say MM is
relatively compact if every sequence of probability measures in [1 contains
a weakly convergence subsequence (with limit being another probability
measure on (S,B(S))). We say I is tight if for every € > 0, there is a
compact set K C S such that infpeq P(K) > 1 —¢

Theorem 14.3

Suppose (S, d) is complete and separable. Then I is relatively compact if
and only if it is tight.
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Construction of Brownian motion: Method 1

Space C([0,1])

Let C([0, 1]) be the space of continuous functions on [0, 1] endowed with
the metric

d(wi,ws) = sup |wi(t) — wa(t)].
0<t<1

It can be shown that (C([0,1]), d) is complete and separable.

By construction each X" takes values in C([0, 1]). Let P” denote the
distribution of X". If we can show (P,)n>1 is tight, then Prohorov's
theorem implies that (P,)n>1 has a subsequence converging weakly to
some probability measure W. In particular, the process X defined on
(C([0,1]), B(C(]0,1])), W) by Xi(w) = w(t) is a Brownian motion.

W is known as Wiener measure.
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Construction of Brownian motion: Method 1

This argument can be extended to C([0, c0)), the space of all continuous
functions on [0, o), with metric

o0

A(x.3) = 3 5 max (bx(t) = ¥(0) A 1).

(C([0,00)), d) is complete and separable. Further, B(C(]0, o)) coincides
with the o-algebra generated by the collection of sets

{w € C([0,00)): (w(t1),w(t2),...,w(ty)) € A}, n>1Aec B(R").

We omit the proof of the tightness of (P,),>1, which requires
Kolmogorov-Chentsov continuity theorem and Arzela-Ascoli theorem.
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Donsker’s theorem

With some extra work, we obtain the following functional CLT.

Theorem 14.4

Let Z1,25,... be iid. random variables with mean zero and variance
02 € (0,00). Define S, = Zy + ---+ Z, and set Sy = 0. Define
X" = (X{)o<t<oo by

1
X! = U—ﬁsm + (nt — [nt]) \/—ZLntHl

The distribution of X" converges weakly to the Wiener measure as n — oco.

v
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Construction of Brownian motion: Method 2

Let R[*>°) denote the set of all real-valued functions on [0, o) and
B(RI%>)) be the o-algebra generated by the collection of sets

{w e RO®): (w(ty),w(ta), ..., w(ty)) € A}, n>1Ac B(R".

The second method for constructing Brownian motion directly finds a
stochastic process X on RI%>) that is distributed as a Brownian motion.
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Construction of Brownian motion: Method 2

A standard application of Kolmogorov extension theorem yields the
following result.

For every x € R, there exists a probability measure Py on
(RIO>0), B(RI->))) such that P,{w: w(0) = x} = 1 and for any
0=ty <ty <---<t,and Borel sets A1,...,A,, we have

Pr({w: w(ti) € Ai}) = / / Hptk teq (Xk—1, Xk ) dxp - - - dxq,
Ay A

n k=1

where xo = 0 and

Theorem 14.5
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Construction of Brownian motion: Method 2

Choosing x = 0 in the previous theorem, we get a probability measure that
satisfies conditions (1), (2), (3) in Definition 14.2. But condition (4) is
hard to satisfy. Indeed, we have the following result:

Lemma 14.6

{ACC(][0,00)): A€ BRI} = {0}.

For example, C([0, 00)) is not measurable.
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Construction of Brownian motion: Method 2

Main idea: construct the discrete-time version of Brownian motion at
t € Q and then extend it to R.

Question: Does a continuous function f: Q@ — R always have a continuous
extension to R?

Consider the function f: Q — R defined by f(x) = 0 if x < v/2 and
f(x) =1if x > V2.
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Continuity of functions

Holder continuity
Let f: S — R for some S C R. We say f is Holder continuous of order

~ > 0 (or y-Hdlder continuous) at x if there exist € > 0, C < oo such that

forany y € (x — e, x + ¢€),

[f(y) = f(:) < Cly —x[7.

If (1) holds for any x, y and some fixed C < oo, then we say f is Holder

continuous of order ~.

(1)

When ~ = 1, this is known as Lipschitz continuity.
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Continuity of functions

Assume ~ € (0, 1].

Pointwise:
Differentiable at x = Lipschitz continuous at x = y-Holder continuous at
X = continuous at x.

Global:
Continuously differentiable = Lipschitz continuous = ~-Holder
continuous = uniformly continuous = continuous.

If f: @ — R is uniformly continuous, it has a unique continuous extension
from Q to R.
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Kolmogorov-Chentsov theorem

For simplicity, we consider the time interval [0, 1] first.

Theorem 14.7
Let (Xt)o<t<1 be real-valued. Suppose there exist o, 3 > 0, C < oo s.t.

E(|1X; — Xs|*) < C|t —s|*™P,  forall s, t €[0,1].
Then, for any v < [3/«, for almost every w there exists C(w) s.t.
[Xe(w) — Xs(w)| < C(w)|t —s|7,  foralls,t € Q2N 0,1],
where Qa = {k2™": n, k > 0} denotes the dyadic rationals. Further, there

is a modification (unique up to indistinguishability) X = (X:)o<t<1 of X
whose paths are a.s. Hoélder continuous of order +.
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Construction of Brownian motion: Method 2

On (RO B(RIO)), we have shown that there is a probability measure P
under which the process X defined by X;(w) = w(t) has stationary,
independent, and normally distributed increments, and P(Xp = 0) = 1.

By Kolmogorov-Chentsov theorem, there is a modification B of X such
that B is a.s. Holder continuous of order v € (0,1/2), since

E(|X; — Xs|?) = Ci|t — s|¥,  for k > 1 and some Cj < oco.

Because B has the same finite-dimensional distributions as X, B is a
Brownian motion.
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Construction of Brownian motion: Method 2

Using a limiting argument, we can extend the construction of B; to
t € [0,00). The paths of (Bt)o<t<co are a.s. locally Holder continuous of
order v € (0,1/2) (see [4] for the definition).

How about v > 1/27

Theorem 14.8

For any v > 1/2, the paths of Brownian motion are a.s. nowhere y-Hélder
continuous (i.e., not ~y-Holder continuous at any t).

This implies that paths of Brownian motion are a.s. nowhere differentiable.
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Construction of Brownian motion: Method 3

The last method constructs Brownian motion as an L2-limit.

Consider the time interval [0, 1] equipped with the Lebesgue measure \.

Let L2([0,1]) be the Hilbert space of square integrable (w.r.t. \) functions
with inner product

(Fg) = /[071] F(x)2(x)A(dx).

Let (by)n>1 be an orthonormal basis; that is, (bs, bm) = 1{p—my, and

lim Hf . i(f, bk>ka —0, Yfel?(],1)).

n—o0
k=1
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Construction of Brownian motion: Method 3

Let Z1,2>,... be i.i.d. N(0,1) random variables defined on some
probability space (2, F,P). For each n > 1 and t € [0, 1], define

n

X =" (Lo, bi)Zi

i=1

— Z,'b,‘ S )\ dS .
/M (g ()) (ds)

It can be shown that (X),>1 converges in L? to some random variable
X¢. Further, the process (X¢)o<t<1 has the same finite-dimensional
distributions as Brownian motion.
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Construction of Brownian motion: Method 3

For example, let by = 1 and b,(x) = V2 cos((n — 1)7x) for n > 2. Then,

V2sin(krt)
n
X" = zlt+§ T Z,
7T
k=1
4 32 256 2048

Simulation of two sample paths for difference choices of n.
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Construction of Brownian motion: Method 3

We can still use Kolmogorov-Chentsov continuity theorem to show that X
has a continuous modification. But now we have a shortcut. By choosing
a proper orthonormal basis of L2([0,1]), we can have |X" — X||__ 23 0.
Since a uniform limit of continuous functions is again continuous, this
would guarantee that X is continuous a.s. and thus X is a Brownian
motion. See [4, Chap. 21.5].

This is also known as Lévy's construction of Brownian motion.
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Application to stochastic integrals

Let (by)n>1 be an orthonormal basis of L2([0, 1]) such that

o0

B: = Z(l[o,t], bi) Z;

i=1

is a Brownian motion. Given f € L2([0,1]) and t € [0, 1], we define

/O £(5)dB, = /[O ,f© (Z Z,-b,-(s)> A(ds)
Z f]l[o ] ,' Z;.
i=1

This is called the stochastic integral of f w.r.t. B.
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Another characterization of Brownian motion

Theorem 14.9

Equivalently, B = (Bt)o<t<co is a standard one-dimensional Brownian
motion if
© B is a Gaussian process; that is, all finite dimensional distributions are
multivariate normal.;
@ E[B:] =0 and Cov(Bs,Bt) =s At foranys,t > 0;
© sample paths of B are almost surely continuous.

Try it yourself.
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Exercises

Let B = (Bt)o<t<co be a Brownian motion.

Exercise 14.1
Prove Theorem 14.9.

Exercise 14.2

Let ¢ > 0. Show that X = (X¢)o<t<o is also a Brownian motion where

Xt = Cil/cht.

Exercise 14.3
Let Y = [ Byds. Find E[Y] and E[Y?].
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Exercises

Exercise 14.4
Let a > 0 and F; = o(B¢). Show that (Gt)o<t<oo is @ martingale where

1
G; = exp (aBt - —a2t> .

2

Exercise 14.5

For t € [0,1], let X; = fot f(s)dBs denote the stochastic integral defined
in (2). Show that for any s, t > 0, Cov(Xs, X¢) = [ £2(u)du.
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