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Continuous-time stochastic processes

Let (Ω,F ,P) be a probability space. We say (Xt)0≤t<∞, a collection of
random variables defined on (Ω,F ,P) indexed by t ∈ [0,∞), is a
continuous-time stochastic process.

Sample path

For each ω ∈ Ω, the function t 7→ Xt(ω) is said to be a sample path or
trajectory of the process X = (Xt)0≤t<∞.

Finite-dimensional distributions

The finite-dimensional distributions of X refer to the distributions of
(Xt1 ,Xt2 , . . . ,Xtn) for any n ≥ 1 and 0 ≤ t1 < t2 ≤ · · · < tn <∞.
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Equivalence between stochastic processes

Theorem 14.1

Let X and Y be two stochastic processes. Consider the following.

1 P(Xt = Yt for every 0 ≤ t <∞) = 1 (indistinguishable).

2 P(Xt = Yt) = 1 for every 0 ≤ t <∞ (modification).

3 X and Y have the same finite-dimensional distributions.

Then (1) ⇒ (2) ⇒ (3) .

Proof.

Try it yourself.
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Continuous-time martingales

Let (Ft)0≤t<∞ be a filtration (i.e., non-decreasing σ-algebras) such that
X is adapted to (Ft)0≤t<∞ (i.e., Xt ∈ Ft for each t). Further, assume
that E|Xt | <∞ for each t.

Submartingales, supermartingales and martingales

X is a submartingale if E[Xt | Fs ] ≥ Xs , a.s. for any 0 ≤ s < t <∞.

X is a supermartingale if −X is a submartingale.

X is a martingale if it is both a supermartingale and a submartingale.

Many results for discrete-time martingales (e.g. upcrossing inequality,
Doob’s inequality, optional sampling theorem) continue to hold for
continuous-time martingales with right-continuous paths.
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Brownian motion

Brownian motion is the foundation of continuous-time martingales.

Definition 14.2

We say B = (Bt)0≤t<∞
a is a standard one-dimensional Brownian motion

(i.e., Wiener process) if

1 B0 = 0;

2 for any t0 < t1 < · · · < tn, B(t0),B(t1)− B(t0), . . . ,B(tn)− B(tn−1)
are independent;

3 for any s, t ≥ 0, B(s + t)− B(s) ∼ N(0, t);

4 sample paths of B are almost surely continuous.

aWe will sometimes write B(t) instead of Bt .
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Numerical simulation of Brownian motion

Here is the R code.

h = 0.001

N = 1/h

Z = rnorm(N, mean=0, sd=sqrt(h))

B = c(0, cumsum(Z))

plot((0:N)/N, B, type=‘l’, xlab=‘time’, ylab=‘B_t’)
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Numerical simulation of Brownian motion
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Construction of Brownian motion: Method 1

We first consider how to construct a Brownian motion on the time interval
[0, 1]. The method we use will also justify the simulation scheme used in
the previous slides and lead to the famous Donsker’s theorem.
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Construction of Brownian motion: Method 1

Let Z1,Z2, . . . be i.i.d. random variables with mean zero and variance
σ2 ∈ (0,∞). Define Sn = Z1 + · · ·+ Zn and set S0 = 0. Define (X n

t )0≤t≤1

as the scaled linear interpolation of (Sj)1≤j≤n:

X n
t =

1

σ
√
n
Sbntc + (nt − bntc) 1

σ
√
n
Zbntc+1

=:
1

σ
√
n
Sbntc + En,t .

Note that En,t
P→ 0 as n→∞. Since bntc/n→ t, Sbntc/σ

√
n (and thus

X n
t ) converges in distribution to

√
tN(0, 1) by CLT.
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Construction of Brownian motion: Method 1

Similarly, an application of the multivariate CLT yields that, for any
0 ≤ t0 < t1 < · · · < tm ≤ 1, (X n(t0),X n(t1), . . . ,X n(tm)) converges in
distribution to the finite-dimensional distribution specified in
Definition 14.2 (i.e., a multivariate normal distribution with independent
increments).

To show that this implies the existence of Brownian motion, we need

Prohorov’s theorem,

Kolmogorov-Chentsov continuity theorem (see Method 2),

Arzelà-Ascoli theorem (see [4]).
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Prohorov’s theorem

Let (S , d) be a metric space and B(S) denote the Borel σ-algebra (i.e.,
the σ-algebra generated by all open sets w.r.t. the metric d).

Relatively compactness and tightness

Let Π be a collection of probability measures on (S ,B(S)). We say Π is
relatively compact if every sequence of probability measures in Π contains
a weakly convergence subsequence (with limit being another probability
measure on (S ,B(S))). We say Π is tight if for every ε > 0, there is a
compact set K ⊂ S such that infP∈Π P(K ) ≥ 1− ε

Theorem 14.3

Suppose (S , d) is complete and separable. Then Π is relatively compact if
and only if it is tight.
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Construction of Brownian motion: Method 1

Space C([0, 1])

Let C([0, 1]) be the space of continuous functions on [0, 1] endowed with
the metric

d(ω1, ω2) = sup
0≤t≤1

|ω1(t)− ω2(t)|.

It can be shown that (C([0, 1]), d) is complete and separable.

By construction each X n takes values in C([0, 1]). Let Pn denote the
distribution of X n. If we can show (Pn)n≥1 is tight, then Prohorov’s
theorem implies that (Pn)n≥1 has a subsequence converging weakly to
some probability measure W . In particular, the process X defined on
(C([0, 1]),B(C([0, 1])),W ) by Xt(ω) = ω(t) is a Brownian motion.
W is known as Wiener measure.
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Construction of Brownian motion: Method 1

This argument can be extended to C([0,∞)), the space of all continuous
functions on [0,∞), with metric

d(x , y) =
∞∑
n=1

1

2n
max

0≤t≤n
(|x(t)− y(t)| ∧ 1) .

(C([0,∞)), d) is complete and separable. Further, B(C([0,∞)) coincides
with the σ-algebra generated by the collection of sets

{ω ∈ C([0,∞)) : (ω(t1), ω(t2), . . . , ω(tn)) ∈ A}, n ≥ 1,A ∈ B(Rn).

We omit the proof of the tightness of (Pn)n≥1, which requires
Kolmogorov-Chentsov continuity theorem and Arzelà-Ascoli theorem.

Instructor: Quan Zhou Unit 14: Brownian Motion Fall 2023 13 / 32



Donsker’s theorem

With some extra work, we obtain the following functional CLT.

Theorem 14.4

Let Z1,Z2, . . . be i.i.d. random variables with mean zero and variance
σ2 ∈ (0,∞). Define Sn = Z1 + · · ·+ Zn and set S0 = 0. Define
X n = (X n

t )0≤t<∞ by

X n
t =

1

σ
√
n
Sbntc + (nt − bntc) 1

σ
√
n
Zbntc+1.

The distribution of X n converges weakly to the Wiener measure as n→∞.
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Construction of Brownian motion: Method 2

Let R[0,∞) denote the set of all real-valued functions on [0,∞) and
B(R[0,∞)) be the σ-algebra generated by the collection of sets

{ω ∈ R[0,∞) : (ω(t1), ω(t2), . . . , ω(tn)) ∈ A}, n ≥ 1,A ∈ B(Rn).

The second method for constructing Brownian motion directly finds a
stochastic process X on R[0,∞) that is distributed as a Brownian motion.

Instructor: Quan Zhou Unit 14: Brownian Motion Fall 2023 15 / 32



Construction of Brownian motion: Method 2

A standard application of Kolmogorov extension theorem yields the
following result.

Theorem 14.5

For every x ∈ R, there exists a probability measure Px on
(R[0,∞),B(R[0,∞))) such that Px{ω : ω(0) = x} = 1 and for any
0 = t0 < t1 < · · · < tn and Borel sets A1, . . . ,An, we have

Px({ω : ω(ti ) ∈ Ai}) =

∫
A1

· · ·
∫
An

n∏
k=1

ptk−tk−1
(xk−1, xk)dxn · · · dx1,

where x0 = 0 and

pt(x , y) =
1√
2πt

e−(y−x)2/2t .
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Construction of Brownian motion: Method 2

Choosing x = 0 in the previous theorem, we get a probability measure that
satisfies conditions (1), (2), (3) in Definition 14.2. But condition (4) is
hard to satisfy. Indeed, we have the following result:

Lemma 14.6

{A ⊂ C([0,∞)) : A ∈ B(R[0,∞))} = {∅}.

For example, C([0,∞)) is not measurable.

Instructor: Quan Zhou Unit 14: Brownian Motion Fall 2023 17 / 32



Construction of Brownian motion: Method 2

Main idea: construct the discrete-time version of Brownian motion at
t ∈ Q and then extend it to R.

Question: Does a continuous function f : Q→ R always have a continuous
extension to R?

Consider the function f : Q→ R defined by f (x) = 0 if x <
√

2 and
f (x) = 1 if x >

√
2.
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Continuity of functions

Hölder continuity

Let f : S → R for some S ⊂ R. We say f is Hölder continuous of order
γ > 0 (or γ-Hölder continuous) at x if there exist ε > 0,C <∞ such that
for any y ∈ (x − ε, x + ε),

|f (y)− f (x)| ≤ C |y − x |γ . (1)

If (1) holds for any x , y and some fixed C <∞, then we say f is Hölder
continuous of order γ.

When γ = 1, this is known as Lipschitz continuity.
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Continuity of functions

Assume γ ∈ (0, 1].

Pointwise:
Differentiable at x ⇒ Lipschitz continuous at x ⇒ γ-Hölder continuous at
x ⇒ continuous at x .

Global:
Continuously differentiable ⇒ Lipschitz continuous ⇒ γ-Hölder
continuous ⇒ uniformly continuous ⇒ continuous.

If f : Q→ R is uniformly continuous, it has a unique continuous extension
from Q to R.
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Kolmogorov-Chentsov theorem

For simplicity, we consider the time interval [0, 1] first.

Theorem 14.7

Let (Xt)0≤t≤1 be real-valued. Suppose there exist α, β > 0,C <∞ s.t.

E(|Xt − Xs |α) ≤ C |t − s|1+β, for all s, t ∈ [0, 1].

Then, for any γ < β/α, for almost every ω there exists C (ω) s.t.

|Xt(ω)− Xs(ω)| ≤ C (ω)|t − s|γ , for all s, t ∈ Q2 ∩ [0, 1],

where Q2 = {k2−n : n, k ≥ 0} denotes the dyadic rationals. Further, there
is a modification (unique up to indistinguishability) X̃ = (X̃t)0≤t≤1 of X
whose paths are a.s. Hölder continuous of order γ.
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Construction of Brownian motion: Method 2

On (R[0,1],B(R[0,1])), we have shown that there is a probability measure P
under which the process X defined by Xt(ω) = ω(t) has stationary,
independent, and normally distributed increments, and P(X0 = 0) = 1.

By Kolmogorov-Chentsov theorem, there is a modification B of X such
that B is a.s. Hölder continuous of order γ ∈ (0, 1/2), since

E(|Xt − Xs |2k) = Ck |t − s|k , for k ≥ 1 and some Ck <∞.

Because B has the same finite-dimensional distributions as X , B is a
Brownian motion.
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Construction of Brownian motion: Method 2

Using a limiting argument, we can extend the construction of Bt to
t ∈ [0,∞). The paths of (Bt)0≤t<∞ are a.s. locally Hölder continuous of
order γ ∈ (0, 1/2) (see [4] for the definition).

How about γ ≥ 1/2?

Theorem 14.8

For any γ > 1/2, the paths of Brownian motion are a.s. nowhere γ-Hölder
continuous (i.e., not γ-Hölder continuous at any t).

This implies that paths of Brownian motion are a.s. nowhere differentiable.
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Construction of Brownian motion: Method 3

The last method constructs Brownian motion as an L2-limit.

Consider the time interval [0, 1] equipped with the Lebesgue measure λ.
Let L2([0, 1]) be the Hilbert space of square integrable (w.r.t. λ) functions
with inner product

〈f , g〉 =

∫
[0,1]

f (x)g(x)λ(dx).

Let (bn)n≥1 be an orthonormal basis; that is, 〈bn, bm〉 = 1{n=m}, and

lim
n→∞

∥∥∥f − n∑
k=1

〈f , bk〉bk
∥∥∥ = 0, ∀ f ∈ L2([0, 1]).

Instructor: Quan Zhou Unit 14: Brownian Motion Fall 2023 24 / 32



Construction of Brownian motion: Method 3

Let Z1,Z2, . . . be i.i.d. N(0, 1) random variables defined on some
probability space (Ω,F ,P). For each n ≥ 1 and t ∈ [0, 1], define

X n
t =

n∑
i=1

〈1[0,t], bi 〉Zi

=

∫
[0,t]

(
n∑

i=1

Zibi (s)

)
λ(ds).

It can be shown that (X n
t )n≥1 converges in L2 to some random variable

Xt . Further, the process (Xt)0≤t≤1 has the same finite-dimensional
distributions as Brownian motion.
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Construction of Brownian motion: Method 3

For example, let b1 = 1 and bn(x) =
√

2 cos((n − 1)πx) for n ≥ 2. Then,

X n
t = Z1t +

n−1∑
k=1

√
2 sin(kπt)

kπ
Zk+1.

Simulation of two sample paths for difference choices of n.
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Construction of Brownian motion: Method 3

We can still use Kolmogorov-Chentsov continuity theorem to show that X
has a continuous modification. But now we have a shortcut. By choosing
a proper orthonormal basis of L2([0, 1]), we can have ‖X n − X‖∞

a.s.→ 0.
Since a uniform limit of continuous functions is again continuous, this
would guarantee that X is continuous a.s. and thus X is a Brownian
motion. See [4, Chap. 21.5].

This is also known as Lévy’s construction of Brownian motion.
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Application to stochastic integrals

Let (bn)n≥1 be an orthonormal basis of L2([0, 1]) such that

Bt =
∞∑
i=1

〈1[0,t], bi 〉Zi

is a Brownian motion. Given f ∈ L2([0, 1]) and t ∈ [0, 1], we define∫ t

0
f (s)dBs =

∫
[0,t]

f (s)

( ∞∑
i=1

Zibi (s)

)
λ(ds)

=
∞∑
i=1

〈f 1[0,t], bi 〉Zi .

(2)

This is called the stochastic integral of f w.r.t. B.
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Another characterization of Brownian motion

Theorem 14.9

Equivalently, B = (Bt)0≤t<∞ is a standard one-dimensional Brownian
motion if

1 B is a Gaussian process; that is, all finite dimensional distributions are
multivariate normal;

2 E[Bt ] = 0 and Cov(Bs ,Bt) = s ∧ t for any s, t ≥ 0;

3 sample paths of B are almost surely continuous.

Proof.

Try it yourself.
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Exercises

Let B = (Bt)0≤t<∞ be a Brownian motion.

Exercise 14.1

Prove Theorem 14.9.

Exercise 14.2

Let c > 0. Show that X = (Xt)0≤t<∞ is also a Brownian motion where

Xt = c−1/2Bct .

Exercise 14.3

Let Y =
∫ 1

0 Bsds. Find E[Y ] and E[Y 2].
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Exercises

Exercise 14.4

Let a > 0 and Ft = σ(Bt). Show that (Gt)0≤t<∞ is a martingale where

Gt = exp

(
aBt −

1

2
a2t

)
.

Exercise 14.5

For t ∈ [0, 1], let Xt =
∫ t

0 f (s)dBs denote the stochastic integral defined

in (2). Show that for any s, t ≥ 0, Cov(Xs ,Xt) =
∫ s∧t

0 f 2(u)du.
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