
Unit 12: Limit Theorems for Martingales

Instructor: Quan Zhou

12.1 Weak law of large numbers

Let X1, X2, . . . be a sequence of random variables, and define Sn = X1+· · ·+
Xn for each n. Let (Fn)n≥0 be a filtration such that Xn ∈ Fn for each n. We
will compare the results for two settings: (i) X1, X2, . . . are independent, (ii)
(Sn)n≥1 is a martingale w.r.t. (Fn).

Theorem 12.1. Let X1, X2, . . . be independent. Let (bn)n≥1 be a sequence of
positive constants such that bn ↑ ∞, and define Yn,k = Xk1{|Xk|≤bn}. Then,

Sn/bn
P→ 0 if and only if

(i)
∑n

k=1 P(|Xk| > bn)→ 0;

(ii) b−1n
∑n

k=1 E[Yn,k]→ 0;

(iii) b−2n
∑n

k=1

{
E[Y 2

n,k]− (EYn,k)
2
}
→ 0.

Proof. See [5].

Theorem 12.2. Let (Sn)n≥1 be a martingale. Let (bn)n≥1 be a sequence of
positive constants such that bn ↑ ∞, and define Yn,k = Xk1{|Xk|≤bn}. Suppose

(i)
∑n

k=1 P(|Xk| > bn)→ 0;

(ii) b−1n
∑n

k=1 E[Yn,k | Fk−1]
P→ 0;

(iii) b−2n
∑n

k=1

{
E[Y 2

n,k]− E (E[Yn,k | Fk−1]2)
}
→ 0;

Then, Sn/bn
P→ 0.

Proof. Let Tn = Yn,1 + · · ·+ Yn,n. Then,

P(Sn 6= Tn) ≤
n∑
k=1

P(Xk 6= Yn,k) =
n∑
k=1

P(Xk > bn)→ 0.
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Hence, by condition (i), we only need to show Tn/bn
P→ 0. Due to condition

(ii), this is equivalent to proving that

1

bn

n∑
k=1

(Yn,k − E[Yn,k | Fk−1])
P→ 0.

Define Zn,k = Yn,k − E[Yn,k | Fk−1]. Apply Markov’s inequality to get

P

(
b−1n

∣∣∣∣∣
n∑
k=1

Zn,k

∣∣∣∣∣ > ε

)
≤ 1

ε2b2n
E

( n∑
k=1

Zn,k

)2
 .

For 1 ≤ i < j ≤ n, we have

E[Zn,iZn,j] = E[Zn,jE[Zn,i | Fj]] = 0.

Since E
[
Z2
n,k

]
= E[Y 2

n,k]− E (E[Yn,k | Fk−1]2), by condition (iii),

P

(
b−1n

∣∣∣∣∣
n∑
k=1

Zn,k

∣∣∣∣∣ > ε

)
≤ 1

ε2b2n

n∑
k=1

E
[
Z2
n,k

]
→ 0,

which completes the proof.

Remark 12.1. The three conditions in Theorem 12.2 are sufficient but not
necessary. See [4] for counterexamples where the weak law of large numbers
holds but condition (i) is violated.

12.2 Almost sure convergence of random series

We still use the same notation as in Section 12.1: let X1, X2, . . . be random
variables and Sn = X1 + · · ·+Xn.

Theorem 12.3 (Kolmogorov convergence criterion). Let X1, X2, . . . be in-
dependent with E[Xn] = 0 for each n. If

∑∞
n=1 E[X2

n] < ∞, then, almost
surely, Sn converges to a finite limit.

Theorem 12.4. Let (Sn)n≥1 be a square integrable martingale. Then Sn
converges (to a finite limit) a.s. on the event {

∑∞
n=1 E[X2

n | Fn−1] <∞}.

2
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Proof. This is essentially Theorem 7.3. The square variation process of S is

〈S〉n =
n∑
k=1

E[(Sk − Sk−1)2 | Fk−1] =
n∑
k=1

E[X2
k | Fk−1].

By Theorem 7.3, Sn converges a.s. on the event {〈S〉∞ <∞}.

Theorem 12.5 (Chow, 1965). Let (Sn)n≥1 be a martingale and 1 ≤ p ≤ 2.
Then Sn converges (to a finite limit) a.s. on the event{

∞∑
n=1

E[|Xn|p | Fn−1] <∞

}
.

Proof. See [2].

Theorem 12.6 (Strong Law of Large Numbers). Let (Sn)n≥1 be a martin-
gale, and (Wn)n≥1 be non-decreasing, positive and previsible. Then, Sn/Wn

converges to zero a.s. on the event{
Wn →∞, and

∞∑
n=1

W−p
n E[|Xn|p | Fn−1] <∞

}
(1)

where 1 ≤ p ≤ 2.

Proof. Since Wn is previsible, by Theorem 12.5,
∑n

k=1(Xk/Wk) converges to
a finite limit a.s. on the given event. By Kronecker’s lemma, we further have
Sn/Wn → 0 a.s. on the given event.

12.3 Central limit theorems

We consider triangular arrays in this section. Let {Xn,k : n ≥ 1, 1 ≤ k ≤ n}
be a triangular array of random variables. For each (n, k), let

Sn,k = Xn,1 + · · ·Xn,k,

and Sn = Sn,n. For each n, let (Fn,k)0≤k≤n be a filtration such that Xn,k ∈
Fn,k for each k.

Theorem 12.7 (Lindeberg-Feller CLT). For each n, let Xn,1, . . . , Xn,n be
independent with mean zero and finite variance. Suppose

3
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(i)
∑n

k=1 EX
2
n,k → σ2 ∈ (0,∞),

(ii) for all ε > 0, limn→∞
∑n

k=1 E
[
|Xn,k|21{|Xn,k|>ε}

]
= 0.

Then Sn/σ
D→ N(0, 1).

Theorem 12.8. For each n, let (Sn,k)1≤k≤n be a square integrable martingale
with E[Sn,k] = 0. Let V be a random variable s.t. P(|V | <∞) = 1. Suppose

(i)
∑n

k=1 E[X2
n,k | Fn,k−1]

P→ V , as n→∞;

(ii) for all ε > 0,
∑n

k=1 E
[
|Xn,k|21{|Xn,k|>ε} | Fn,k−1

] P→ 0, as n→∞.

Further, suppose at least one of the following two conditions holds.

(iii) V ∈ F0 where F0 = ∩n≥1Fn,0.

(iv) Fn,k ⊂ Fn+1,k for each n ≥ 1 and 1 ≤ k ≤ n.

Then Sn
D→ Z where the random variable Z has characteristic function

E[eitZ ] = E[e−t
2V/2].

Further, if V > 0 a.s., then Sn/
√
Un

D→ N(0, 1) where Un =
∑n

k=1X
2
n,k.

Proof. See [1, 3, 4].

Example 12.1. Let Z1, Z2, . . . be i.i.d. such that P(Z1 = 1) = P(Z1 =
−1) = 1/2. Define Y1 = Z1, and for n ≥ 2,

Yn = Zn

n−1∑
i=1

Zi
i
.

By Theorem 12.3, we can define
√
V =

∑∞
i=1(Zi/i), which exists and is finite

a.s. And since E[Yk |Z1, . . . , Zk−1] = 0, (Yn)n≥1 is a martingale difference
sequence. One can use Theorem 12.8 to show that

1√
n

n∑
i=1

Yi
D→ W,

∑n
i=1 Yi√∑n
i=1 Y

2
i

D→ N(0, 1),

where W has characteristic function E[e−t
2V/2].

Exercise 12.1. Fill in the details of Example 12.1. That is, construct the
triangular array (Xn,k) and verify the conditions of Theorem 12.8.
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