Unit 10: Random Walks

Instructor: Quan Zhou

10.1 Random walks on R

In this subsection, we let Z;, Zs, ... be arbitrary i.i.d. random variables, and
define Xo =0and X,, = Z; +---+ Z, for each n > 1. Let the filtration be
given by F,, = 0(Zy, ..., Z,). The sequence (X,,),>0 is called a random walk
on R . We first prove a result about the limiting behavior of (X,,) and then
give applications of the optional sampling theorem.

Theorem 10.1. One of the following four events happens with probability
one:

(1) X, =0 for all n.
(i1) X, — 0.
(iii) X, — —o0.
(iv) liminf X,, = —oo and limsup X,, = oc.

Proof. If Z; = 0 a.s., then event (i) happens a.s. If P(Z; > 0) > 0, by the
continuity of measures, there exist some d,e¢ > 0 such that P(Z; > §) > e.
Hence, it follows from Borel-Cantelli lemma that event (ii) happens a.s. if
Zy > 0 and P(Z; > 0) > 0. Similarly, if Z; < 0 and P(Z; < 0) > 0, event
(iii) happens a.s.

Now assume P(Z; > 0) > 0 and P(Z; < 0) > 0, which implies that there
exist some d,e¢ > 0 such that P(Z; > §) > € and P(Z; < —0) > €. Let
X = limsup X,,, and define 4, = {X,, > X —§/2} and B, = A, N {X,, >
X +6/2}. Since A,y N{Z, > §} C By, we have P(B, | F,_1) > €la, ,.
By Levy’s zero-one law, whenever A, happens infinitely often, so does B,,.
An argument by contradiction yields that P(limsup X,, € (—o0,00)) = 0.
Similarly, P(liminf X,, € (—o0,00)) = 0, and thus event (ii), (iii) or (iv)
must happen a.s. O

Remark 10.1. When Z; is integrable and E[Z;] = 0, (X,,) is a martingale.
Theorem shows that, except the trivial case where X,, = 0 for all 0, al-
most surely (X,,) does not converge to a finite limit. Theorem 5.1 (martingale
convergence theorem) thus implies that sup E|X,,| — oc.
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Theorem 10.2. Suppose E[Z)] = 0 and E[Z?] = 0% < oo. Let T be a
stopping time such that E[T)] < co. Then, E[X?] = o*E[T].

Proof. 1t follows from the optional sampling theorem. O

Theorem 10.3. Suppose E[Z;] =0 and E[Z?] = 1. Let
T(c) =inf{n > 1: |X,| > cv/n}.
If ¢ < 1, we have E[T(c)] < 00; if ¢ > 1, we have E[T(c)] = oo.

Proof. Write T" = T'(c¢) and consider ¢ > 1 first. If E[T] < oo, by Theo-
rem [10.2] we have E[X2] = E[T]. But by the definition of T,, X3 > *T > T,
and thus E[X%] > E[T]. This yields the contradiction. The proof for the case
¢ < 1 is more involved and omitted here; see [1]. O

Remark 10.2. It is interesting to compare Theorem with the law of
iterated logarithm. The latter tells us that limsup | X,|/y/2nlog(logn) = 1,
a.s., which implies that for any ¢ < oo, | X,,| > ¢y/n infinitely many times.

Exercise 10.1. Let ¢(f) = Ee??'. Assume Z; is not a constant, which can
be shown to imply that 6 — log () is strictly convex whenever ¢() < occ.
Fix some 6 # 0 and assume ¢() < co. Define

Y, = exp (0X, —nlogy(h)).
Show that (i) (V) is a martingale, (ii) lim,,_,o E\/Y,, = 0, and (iii) Y; %3 0.

Exercise 10.2. Suppose Ee?? = 1 for some # < 0, and Z; is not a constant.
Let a, b be such that a < 0 < b, and define

T =min{n >1: X,, <aor X,, > b}.

Show that (i) E[T] < oo, and (ii) P(X7 < a) < e%.

10.2 Simple random walks

In this subsection, we let Z1, Z,,... be i.i.d. such that P(Z; = 1) =1 —
P(Zy = —1) = p. Define (X,,) as in the last subsection. We say (X,,) is a
simple random walk, or a random walk on Z. When p = 1/2, we say the
random walk is symmetric; when p # 1/2, we say it is asymmetric.

2
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Theorem 10.4. Let (X,,)n>0 be a symmetric simple random walk. Then

Ln0)/2) o
ElX. = ) <j>4ﬂ.

5=0
Proof. We proved this in Example 7.1 using Doob’s decomposition. O

Theorem 10.5. Let (X,,)n>0 be a symmetric simple random walk. Let a,b
be integers such that a < 0 < b, and define

T =min{n > 1: X,, <a or X,, > b}.
Then P(Xr =a) =0/(b—a), and E[T] = —ab.

Proof. 1t is easy to show that there exists some constant € > 0 such that

E[T < n-+b-alF,) > ¢ from which we get ET" < oco. The optional

sampling theorem then yields E[X7] = 0, from which the first result follows.
To find E[T], consider the martingale Y;,, = X2—n. The optional sampling

theorem yields that

a’b ba

b—a b-—a

0 = E[Yy] = E[X7] — E[T] = — E[T] = —ab — E[T).

The proof is complete. O

Theorem 10.6. Let (X,,),>0 be a symmetric simple random walk. For any
b>0, P(T, < o0) =1 and E[T}] = co where T, = min{n > 1: X,, = b}.

Proof. For any a < 0, Theorem implies that min(7,,7};) < 1 a.s. and
P(T, <T,) = —a/(b—a). It follows that

lim P(T, <T-,) = lim —n/(b+n) = 1.

n—oo n—oo
Define E, = {T, < T_,}. Clearly, E,, C E,.1, and thus the continuity of
probability measures yields that lim,,_,., P(Ty, < T_,)) = P(U,,_.o, En)- Since
U, o Bn = {T} < 00}, we get P(T}, < 00) = 1.

To prove ET, = 0o, note that if ET, < oo, the optional sampling theorem

would yield EX7, = 0, which gives the contradiction. O

Remark 10.3. Actually it can be shown that, for a symmetric simple ran-
dom walk, P(T} > t) ~ Ct~'/2 for some constant C' > 0, though we do not
prove the result here.
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Theorem 10.7. Let (X, )n,>0 be an asymmetric simple random walk with
P(Z1 =1) =p e (1/2,1). Define T, = min{n > 1: X,, = x}, and ¢(z) =
(1 —p)*/p*. Then, for integers a,b such that a < 0 < b,

(i) P(To < Th) = 550

(i1) P(T, < 00) = 1(—a).
(111) P(T, < o0) =1 and E[T}] = b/(2p — 1).

Proof. Define Y,, = ¢(X,,). It is easy to show that (Y},),>0 is a martingale.
Mimicking the proof of Theorem [10.5, we find that E[T, A Ty] < oo and

1 =E[Yran] = P(T. < Ty)v(a) + (1 = P(Tu < T))y(b).

A straightforward calculation proves part (i).
As in the proof of Theorem [10.7], we find that

P(b) —1

P(T, < o0) = }’ITQM =(a)" = Y(~a),
P(T, < o0) = lim 1_—le

al=00 Y(b) — 1(a)
Finally, to find E[T}], we use the martingale (Y;,) with

Y,=X,—n2p-1).

Optional sampling theorem shows that E[Y, 7] = 0 for each n, which yields
E[X,an,] = (2p — 1)E[n A T]. By monotone convergence theorem, we have
lim,,_,o E[nAT}] = E[T}]. Hence, it only remains to justify lim,, . E[X,a1,] =
E[X1,] = b. To show this, observe that for any a < 0,

1— —a
P(T, <) =P (inf Xn < a) = (_p) .
n>0 p

Since p > 1/2 implies >~ ((1 — p)/p)" < oo, we get E|inf,>¢ X, | < oo.
Since | Xpaq, | < bV|inf,>0 X, |, we can apply dominated convergence theorem

to conclude the proof. m

Exercise 10.3. Let (X)) be an asymmetric random walk with p € (1/2,1),
and T, = min{n > 1: X,, = b}. Show that

4bp(1 — p)

Var(Tb) = (2p — 1)3 .



Fall 2023 Quan Zhou

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge
university press, 2019.

[2] Achim Klenke. Probability theory: a comprehensive course. Springer
Science & Business Media, 2013.

[3] David Williams. Probability with martingales. Cambridge university
press, 1991.



	Random walks on R
	Simple random walks

